找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Parallel C++; Mastering DPC++ for James Reinders,Ben Ashbaugh,Xinmin Tian Book‘‘‘‘‘‘‘‘ 20211st edition Intel Corporation 2021 heterog

[復(fù)制鏈接]
查看: 16282|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:57:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Parallel C++
副標(biāo)題Mastering DPC++ for
編輯James Reinders,Ben Ashbaugh,Xinmin Tian
視頻videohttp://file.papertrans.cn/263/262989/262989.mp4
概述Learn heterogenous programming for CPU, GPU, FPGA, ASIC, etc..Gain a vision for the future of parallel programming support in C++.Program with industrial strength implementations of SYCL, with extensi
圖書封面Titlebook: Data Parallel C++; Mastering DPC++ for  James Reinders,Ben Ashbaugh,Xinmin Tian Book‘‘‘‘‘‘‘‘ 20211st edition Intel Corporation 2021 heterog
描述.Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics.?..Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand..This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group?and Data Parallel C++ (DPC++), the open source compiler used in this book.? Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations..Data Parallel C++.?provides you with everything needed to use SYCL for programming heterogeneous systems.. .What You‘ll Learn..Accelerate C++ programs using data-parallelprogramming.Target
出版日期Book‘‘‘‘‘‘‘‘ 20211st edition
關(guān)鍵詞heterogenous; FPGA programming; GPU programming; Parallel programming; Data parallelism; SYCL; Intel One A
版次1
doihttps://doi.org/10.1007/978-1-4842-5574-2
isbn_ebook978-1-4842-5574-2
copyrightIntel Corporation 2021
The information of publication is updating

書目名稱Data Parallel C++影響因子(影響力)




書目名稱Data Parallel C++影響因子(影響力)學(xué)科排名




書目名稱Data Parallel C++網(wǎng)絡(luò)公開度




書目名稱Data Parallel C++網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Parallel C++被引頻次




書目名稱Data Parallel C++被引頻次學(xué)科排名




書目名稱Data Parallel C++年度引用




書目名稱Data Parallel C++年度引用學(xué)科排名




書目名稱Data Parallel C++讀者反饋




書目名稱Data Parallel C++讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:44:50 | 只看該作者
Buffers,ent, in the previous chapter. USM forces us to think about where memory lives and what should be accessible where. The buffer abstraction is a higher-level model that hides this from the programmer. Buffers simply represent data, and it becomes the job of the runtime to manage how the data is stored
地板
發(fā)表于 2025-3-22 06:03:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:01:57 | 只看該作者
6#
發(fā)表于 2025-3-22 14:14:19 | 只看該作者
Defining Kernels, represent a kernel right where it is used, but they are not the only way to represent a kernel in SYCL. In this chapter, we will explore various ways to define kernels in detail, helping us to choose a kernel form that is most natural for our C++ coding needs.
7#
發(fā)表于 2025-3-22 18:31:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:05:00 | 只看該作者
9#
發(fā)表于 2025-3-23 02:15:41 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:16 | 只看該作者
Libraries,t use. Libraries are the best way to get our work done. This is not a case of being lazy—it is a case of having better things to do than reinvent the work of others. This is a puzzle piece worth having.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沧州市| 武安市| 百色市| 沂水县| 兴和县| 甘南县| 汉沽区| 桦南县| 中方县| 保康县| 大安市| 林周县| 玛纳斯县| 阿巴嘎旗| 罗城| 措勤县| 鹤庆县| 依兰县| 雅江县| 西充县| 固镇县| 光泽县| 碌曲县| 淮阳县| 迁西县| 姚安县| 禄丰县| 洪洞县| 柳林县| 内乡县| 武强县| 辉南县| 会理县| 门头沟区| 松江区| 民县| 探索| 古田县| 公主岭市| 通道| 本溪市|