找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining in Large Sets of Complex Data; Robson L. F. Cordeiro,Christos Faloutsos,Caetano T Book 2013 The Author(s) 2013 Analysis of Bre

[復制鏈接]
查看: 38386|回復: 40
樓主
發(fā)表于 2025-3-21 17:31:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining in Large Sets of Complex Data
編輯Robson L. F. Cordeiro,Christos Faloutsos,Caetano T
視頻videohttp://file.papertrans.cn/263/262965/262965.mp4
概述Contains a survey on clustering algorithms for moderate-to-high dimensionality data.Includes examples of applications in breast cancer diagnosis, region detection in satellite images, assistance to cl
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Data Mining in Large Sets of Complex Data;  Robson L. F. Cordeiro,Christos Faloutsos,Caetano T Book 2013 The Author(s) 2013 Analysis of Bre
描述The amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of Terabytes, how can we find regions aiming at identifying native rainforests, deforestation or reforestation? Can it be made automatically? Based on the work discussed in this book, the answers to both questions are a sound “yes”, and the results can be obtained in just minutes. In fact, results that used to require days or weeks of hard work from human specialists can now be obtained in minutes with high precision. .Data Mining in Large Sets of Complex Data. discusses new algorithms that take steps forward from traditional data mining (especially for clustering) by considering large, complex datasets. Usually, other works focus in one aspect, either data size or complexity. This work considers both: it enables mining complex data from high impact applications, such as breast cancer diagnosis, region classification in satellite images, assistance to climate change forecast, recommendation
出版日期Book 2013
關(guān)鍵詞Analysis of Breast Cancer Data; Analysis of Large Graphs from Social Networks; Analysis of Satellite I
版次1
doihttps://doi.org/10.1007/978-1-4471-4890-6
isbn_softcover978-1-4471-4889-0
isbn_ebook978-1-4471-4890-6Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2013
The information of publication is updating

書目名稱Data Mining in Large Sets of Complex Data影響因子(影響力)




書目名稱Data Mining in Large Sets of Complex Data影響因子(影響力)學科排名




書目名稱Data Mining in Large Sets of Complex Data網(wǎng)絡公開度




書目名稱Data Mining in Large Sets of Complex Data網(wǎng)絡公開度學科排名




書目名稱Data Mining in Large Sets of Complex Data被引頻次




書目名稱Data Mining in Large Sets of Complex Data被引頻次學科排名




書目名稱Data Mining in Large Sets of Complex Data年度引用




書目名稱Data Mining in Large Sets of Complex Data年度引用學科排名




書目名稱Data Mining in Large Sets of Complex Data讀者反饋




書目名稱Data Mining in Large Sets of Complex Data讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:15 | 只看該作者
Clustering Methods for Moderate-to-High Dimensionality Data,ter, we discuss the main reasons that lead to this fact. It is also mentioned that the use of dimensionality reduction methods does not solve the problem, since it allows one to treat only the global correlations in the data. Correlations local to subsets of the data cannot be identified without the
板凳
發(fā)表于 2025-3-22 03:19:04 | 只看該作者
地板
發(fā)表于 2025-3-22 05:03:08 | 只看該作者
5#
發(fā)表于 2025-3-22 10:33:49 | 只看該作者
QMAS,mining tasks-the tasks of labeling and summarizing large sets of complex data. Given a large collection of complex objects, . of which have labels, how can we guess the labels of the remaining majority, and how can we spot those objects that may need brand new labels, different from the existing one
6#
發(fā)表于 2025-3-22 16:28:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:06 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:18 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:00:11 | 只看該作者
Glandular Fever (Infectious Mononucleosis)tasets that must be submitted for data mining processes. However, given a . dataset of moderate-to-high dimensionality, how could one cluster its points? Numerous successful, serial clustering algorithms for data in five or more dimensions exist in literature, including the algorithm . that we descr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武功县| 马鞍山市| 南澳县| 北碚区| 二连浩特市| 汾阳市| 普宁市| 怀仁县| 友谊县| 丘北县| 汤原县| 荣昌县| 永平县| 金塔县| 襄汾县| 前郭尔| 咸阳市| 博乐市| 普定县| 保康县| 宜宾县| 萨嘎县| 成都市| 平和县| 遵化市| 册亨县| 大城县| 陆川县| 陈巴尔虎旗| 门源| 云南省| 广元市| 宁波市| 高州市| 望都县| 东宁县| 宝山区| 茂名市| 攀枝花市| 太谷县| 旬邑县|