找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining in Finance; Advances in Relation Boris Kovalerchuk,Evgenii Vityaev Book 2000 Springer Science+Business Media New York 2000 Fina

[復(fù)制鏈接]
查看: 20233|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:38:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Mining in Finance
副標(biāo)題Advances in Relation
編輯Boris Kovalerchuk,Evgenii Vityaev
視頻videohttp://file.papertrans.cn/263/262964/262964.mp4
叢書名稱The Springer International Series in Engineering and Computer Science
圖書封面Titlebook: Data Mining in Finance; Advances in Relation Boris Kovalerchuk,Evgenii Vityaev Book 2000 Springer Science+Business Media New York 2000 Fina
描述.Data Mining in Finance. presents a comprehensive overviewof major algorithmic approaches to predictive data mining, includingstatistical, neural networks, ruled-based, decision-tree, andfuzzy-logic methods, and then examines the suitability of theseapproaches to financial data mining. The book focuses specifically onrelational data mining (RDM), which is a learning method able to learnmore expressive rules than other symbolic approaches. RDM is thusbetter suited for financial mining, because it is able to make greateruse of underlying domain knowledge. Relational data mining also has abetter ability to explain the discovered rules - an abilitycritical for avoiding spurious patterns which inevitably arise whenthe number of variables examined is very large. The earlier algorithmsfor relational data mining, also known as inductive logic programming(ILP), suffer from a relative computational inefficiency and haverather limited tools for processing numerical data. ..Data Mining in Finance. introduces a new approach, combiningrelational data mining with the analysis of statistical significanceof discovered rules. This reduces the search space and speeds up thealgorithms. The book also p
出版日期Book 2000
關(guān)鍵詞Finance; Symbol; algorithms; artificial intelligence; data mining; fuzzy; intelligence; knowledge; knowledge
版次1
doihttps://doi.org/10.1007/b116453
isbn_softcover978-1-4757-7332-3
isbn_ebook978-0-306-47018-9Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Data Mining in Finance影響因子(影響力)




書目名稱Data Mining in Finance影響因子(影響力)學(xué)科排名




書目名稱Data Mining in Finance網(wǎng)絡(luò)公開(kāi)度




書目名稱Data Mining in Finance網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Data Mining in Finance被引頻次




書目名稱Data Mining in Finance被引頻次學(xué)科排名




書目名稱Data Mining in Finance年度引用




書目名稱Data Mining in Finance年度引用學(xué)科排名




書目名稱Data Mining in Finance讀者反饋




書目名稱Data Mining in Finance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:33:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:38 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:09 | 只看該作者
Financial Applications of Relational Data Mining, of these regularities had shown about 75 % of correct forecasts on test data (1995–1996). The target variable was predicted using separately SP500 (close) and the target variable’s own history. Comparison of performance with other methods is presented in the next chapter.
5#
發(fā)表于 2025-3-22 12:29:04 | 只看該作者
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/d/image/262964.jpg
6#
發(fā)表于 2025-3-22 15:34:35 | 只看該作者
https://doi.org/10.1007/b116453Finance; Symbol; algorithms; artificial intelligence; data mining; fuzzy; intelligence; knowledge; knowledge
7#
發(fā)表于 2025-3-22 17:32:33 | 只看該作者
978-1-4757-7332-3Springer Science+Business Media New York 2000
8#
發(fā)表于 2025-3-22 21:48:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:08:03 | 只看該作者
Complications of Endodontic Surgery theoretical viewpoint Computational experiments presented in this chapter have shown these advantages practically for real financial data..Relational data mining methods and MMDR method, in particular, are able to discover useful regularities in financial time series for stock market prediction. In
10#
發(fā)表于 2025-3-23 08:45:01 | 只看該作者
Book 2000l inefficiency and haverather limited tools for processing numerical data. ..Data Mining in Finance. introduces a new approach, combiningrelational data mining with the analysis of statistical significanceof discovered rules. This reduces the search space and speeds up thealgorithms. The book also p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 砚山县| 绩溪县| 浮山县| 北流市| 永吉县| 桐梓县| 连南| 灯塔市| 天长市| 自治县| 依安县| 庆云县| 南乐县| 固始县| 江永县| 长岛县| 西丰县| 广宁县| 县级市| 会泽县| 渑池县| 海林市| 同心县| 乐业县| 门源| 宿州市| 若尔盖县| 肥东县| 巴南区| 拜城县| 武陟县| 内丘县| 景德镇市| 忻城县| 郴州市| 大邑县| 三穗县| 勐海县| 阿克苏市| 满洲里市|