找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining in Crystallography; D. W. M. Hofmann,Liudmila N. Kuleshova Book 2010 Springer-Verlag Berlin Heidelberg 2010 Data Basis.Protein

[復制鏈接]
查看: 16369|回復: 35
樓主
發(fā)表于 2025-3-21 17:26:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining in Crystallography
編輯D. W. M. Hofmann,Liudmila N. Kuleshova
視頻videohttp://file.papertrans.cn/263/262963/262963.mp4
概述This series presents critical reviews of the present position and future trends in modern chemical research concerned with chemical structure and bonding.Short and concise reports, each written by the
叢書名稱Structure and Bonding
圖書封面Titlebook: Data Mining in Crystallography;  D. W. M. Hofmann,Liudmila N. Kuleshova Book 2010 Springer-Verlag Berlin Heidelberg 2010 Data Basis.Protein
描述Humans have been “manually” extracting patterns from data for centuries, but the increasing volume of data in modern times has called for more automatic approaches. Early methods of identifying patterns in data include Bayes’ theorem (1700s) and Regression analysis (1800s). The proliferation, ubiquity and incre- ing power of computer technology has increased data collection and storage. As data sets have grown in size and complexity, direct hands-on data analysis has - creasingly been augmented with indirect, automatic data processing. Data mining has been developed as the tool for extracting hidden patterns from data, by using computing power and applying new techniques and methodologies for knowledge discovery. This has been aided by other discoveries in computer science, such as Neural networks, Clustering, Genetic algorithms (1950s), Decision trees (1960s) and Support vector machines (1980s). Data mining commonlyinvolves four classes of tasks: ? Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. ? Clus
出版日期Book 2010
關鍵詞Data Basis; Protein Structure; Secondary structure; clustering; crystallography; data analysis; data minin
版次1
doihttps://doi.org/10.1007/978-3-642-04759-6
isbn_softcover978-3-642-26161-9
isbn_ebook978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
issn_series 0081-5993
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

書目名稱Data Mining in Crystallography影響因子(影響力)




書目名稱Data Mining in Crystallography影響因子(影響力)學科排名




書目名稱Data Mining in Crystallography網(wǎng)絡公開度




書目名稱Data Mining in Crystallography網(wǎng)絡公開度學科排名




書目名稱Data Mining in Crystallography被引頻次




書目名稱Data Mining in Crystallography被引頻次學科排名




書目名稱Data Mining in Crystallography年度引用




書目名稱Data Mining in Crystallography年度引用學科排名




書目名稱Data Mining in Crystallography讀者反饋




書目名稱Data Mining in Crystallography讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:53:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:25:23 | 只看該作者
0081-5993 e data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. ? Clus978-3-642-26161-9978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
地板
發(fā)表于 2025-3-22 06:55:32 | 只看該作者
5#
發(fā)表于 2025-3-22 11:38:34 | 只看該作者
Data Mining for Protein Secondary Structure Prediction, less successful if such fragments are absent in the fragments database. Recently we have improved secondary structure predictions further by combining FDM with classical GOR V (Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002a) Combining the GOR V algorithm with evolutionary information for pro
6#
發(fā)表于 2025-3-22 13:26:07 | 只看該作者
Book 2010 (1980s). Data mining commonlyinvolves four classes of tasks: ? Classi cation: Arranges the data into prede ned groups. For example, an e-mail program might attempt to classify an e-mail as legitimate or spam. Common algorithmsinclude Nearest neighbor,Naive Bayes classi er and Neural network. ? Clus
7#
發(fā)表于 2025-3-22 17:17:53 | 只看該作者
Data Mining in Crystallography978-3-642-04759-6Series ISSN 0081-5993 Series E-ISSN 1616-8550
8#
發(fā)表于 2025-3-22 23:50:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:18 | 只看該作者
978-3-642-26161-9Springer-Verlag Berlin Heidelberg 2010
10#
發(fā)表于 2025-3-23 07:20:05 | 只看該作者
Young Dual Language Learners in China into a model describing a particular process or natural phenomenon. Requirements with respect to the predictivity and the generality of the resulting models are usually significantly higher than in other application domains. Therefore, in the use of data mining in the sciences, and crystallography
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
营山县| 赞皇县| 阳城县| 商都县| 新晃| 达拉特旗| 三穗县| 奎屯市| 武清区| 沅江市| 莱阳市| 郑州市| 仪陇县| 蕲春县| 进贤县| 忻城县| 东明县| 穆棱市| 将乐县| 陵川县| 临高县| 扎赉特旗| 昂仁县| 舞阳县| 安阳市| 无锡市| 华蓥市| 福建省| 重庆市| 富阳市| 永靖县| 高安市| 盐边县| 新闻| 绥化市| 满洲里市| 中阳县| 疏勒县| 英吉沙县| 桓仁| 大安市|