找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Service; Katsutoshi Yada Book 2014 Springer-Verlag Berlin Heidelberg 2014 Data Mining.Domain Knowledge.Large Database.Sens

[復制鏈接]
查看: 15108|回復: 57
樓主
發(fā)表于 2025-3-21 19:59:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining for Service
編輯Katsutoshi Yada
視頻videohttp://file.papertrans.cn/263/262952/262952.mp4
概述Presents a new way for strategic.Use of Large-Scale Data Sets in Business.Demonstrates how Data Mining can be used to Revitalize your Business.Written by leading experts in the field.Includes suppleme
叢書名稱Studies in Big Data
圖書封面Titlebook: Data Mining for Service;  Katsutoshi Yada Book 2014 Springer-Verlag Berlin Heidelberg 2014 Data Mining.Domain Knowledge.Large Database.Sens
描述.Virtually all nontrivial and modern service related problems and systems involve data volumes and types that clearly fall into what is presently meant as "big data", that is, are huge, heterogeneous, complex, distributed, etc..Data mining is a series of processes which include collecting and accumulating data, modeling phenomena, and discovering new information, and it is one of the most important steps to scientific analysis of the processes of services..Data mining application in services requires a thorough understanding of the characteristics of each service and knowledge of the compatibility of data mining technology within each particular service, rather than knowledge only in calculation speed and prediction accuracy. Varied examples of services provided in this book will help readers understand the relation between services and data mining technology. This book is intended to stimulate interest among researchers and practitioners in the relation between data mining technology and its application to other fields..
出版日期Book 2014
關鍵詞Data Mining; Domain Knowledge; Large Database; Sensor Network; Social Media; Strategic Use of Data
版次1
doihttps://doi.org/10.1007/978-3-642-45252-9
isbn_softcover978-3-662-50743-8
isbn_ebook978-3-642-45252-9Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Data Mining for Service影響因子(影響力)




書目名稱Data Mining for Service影響因子(影響力)學科排名




書目名稱Data Mining for Service網(wǎng)絡公開度




書目名稱Data Mining for Service網(wǎng)絡公開度學科排名




書目名稱Data Mining for Service被引頻次




書目名稱Data Mining for Service被引頻次學科排名




書目名稱Data Mining for Service年度引用




書目名稱Data Mining for Service年度引用學科排名




書目名稱Data Mining for Service讀者反饋




書目名稱Data Mining for Service讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:28:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:15:23 | 只看該作者
Paul van de Laar,Arie van der Schoorl evaluation on two benchmark corpora. These experiments indicate that our algorithm can deliver a substantial reduction in the number of features, from 8,742 to 500 and from 47,236 to 392 features, while preserving or even improving the retrieval performance.
地板
發(fā)表于 2025-3-22 08:20:52 | 只看該作者
Commentar zur Pharmacopoea Germanicar different sources. The system we proposed here is the Multi-Collaborative Filtering Trust Network Recommendation System, which combined multiple online sources, measured trust, temporal relation and similarity factors.
5#
發(fā)表于 2025-3-22 11:15:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:15:59 | 只看該作者
Dimensionality Reduction for Information Retrieval Using Vector Replacement of Rare Termsl evaluation on two benchmark corpora. These experiments indicate that our algorithm can deliver a substantial reduction in the number of features, from 8,742 to 500 and from 47,236 to 392 features, while preserving or even improving the retrieval performance.
7#
發(fā)表于 2025-3-22 17:43:10 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:10 | 只看該作者
9#
發(fā)表于 2025-3-23 01:55:07 | 只看該作者
Scam Detection in Twittere and Bayes Information Criteria is investigated and combined with the classification step. Our experiments show that 87?% accuracy is achievable with only 9 labeled samples and 4000 unlabeled samples, among other results.
10#
發(fā)表于 2025-3-23 09:27:48 | 只看該作者
Change Detection from Heterogeneous Data Sourcese describe an approach of singular spectrum transformation for change-point detection for heterogeneous data. We also introduce a novel technique of proximity-based outlier detection to handle the dynamic nature of the data. Using real-world sensor data, we demonstrate the utility of the proposed methods.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
日照市| 高青县| 阳原县| 宣化县| 苍溪县| 山阴县| 宁陕县| 德惠市| 新泰市| 神农架林区| 淳安县| 波密县| 阿拉善右旗| 庆城县| 大石桥市| 胶州市| 郯城县| 四子王旗| 阿克陶县| 洛南县| 滁州市| 土默特右旗| 亚东县| 罗田县| 乾安县| 乳山市| 乌苏市| 通海县| 焦作市| 玉田县| 井研县| 景谷| 丘北县| 连州市| 漾濞| 恩施市| 兰坪| 万安县| 建湖县| 尖扎县| 自治县|