找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Scientific and Engineering Applications; Robert L. Grossman,Chandrika Kamath,Raju R. Nambur Book 2001 Springer Science+Bus

[復(fù)制鏈接]
樓主: protocol
61#
發(fā)表于 2025-4-1 04:00:29 | 只看該作者
62#
發(fā)表于 2025-4-1 09:09:35 | 只看該作者
63#
發(fā)表于 2025-4-1 12:13:16 | 只看該作者
,HDDI?: Hierarchical Distributed Dynamic Indexing, global Internet/World Wide Web exemplifies the rapid deployment of such technologies. Despite significant accomplishments in internetworking, however, scalable indexing and data-mining techniques for computational knowledge management lag behind the rapid growth of distributed collections. Hierarch
64#
發(fā)表于 2025-4-1 18:18:17 | 只看該作者
Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets,scientific and commercial applications. Clustering is the process of identifying dense regions in a sparse multi-dimensional data set. Several clustering techniques proposed earlier either lack in scalability to a very large set of dimensions or to a large data set. Many of them require key user inp
65#
發(fā)表于 2025-4-1 20:20:41 | 只看該作者
66#
發(fā)表于 2025-4-1 23:03:57 | 只看該作者
https://doi.org/10.1007/978-3-322-89768-8 networks, graphical models, and flexible predictive modeling. The primary conclusion is that closer integration of computational methods with statistical thinking is likely to become increasingly important in data mining applications.
67#
發(fā)表于 2025-4-2 05:15:36 | 只看該作者
Comictheorie(n) und Forschungspositionen introduces HDDI?, focusing on the model building techniques employed at each node of the hierarchy. A novel approach to information clustering based on the contextual transitivity of similarity between terms is introduced. We conclude with several example applications of HDDI? in the textual data mining and information retrieval fields.
68#
發(fā)表于 2025-4-2 09:14:52 | 只看該作者
Understanding High Dimensional and Large Data Sets: Some Mathematical Challenges and Opportunities,rge data sets. There is a need, therefore, for new fundamental thinking about these problems and new mathematical approaches. In this paper we review a few such promising directions that draw extensively from fertile areas of harmonic analysis, discrete mathematics, stochastic analysis, and statistical methods.
69#
發(fā)表于 2025-4-2 13:53:20 | 只看該作者
Data Mining at the Interface of Computer Science and Statistics, networks, graphical models, and flexible predictive modeling. The primary conclusion is that closer integration of computational methods with statistical thinking is likely to become increasingly important in data mining applications.
70#
發(fā)表于 2025-4-2 19:10:21 | 只看該作者
,HDDI?: Hierarchical Distributed Dynamic Indexing, introduces HDDI?, focusing on the model building techniques employed at each node of the hierarchy. A novel approach to information clustering based on the contextual transitivity of similarity between terms is introduced. We conclude with several example applications of HDDI? in the textual data mining and information retrieval fields.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 仁怀市| 成都市| 绥阳县| 曲水县| 东阳市| 安岳县| 利津县| 长丰县| 衢州市| 新竹市| 西华县| 云和县| 清流县| 卢湾区| 保康县| 长治县| 肇东市| 湖北省| 深水埗区| 山西省| 贵定县| 沙河市| 蒙城县| 郸城县| 诸城市| 虞城县| 遵义市| 龙口市| 商城县| 望江县| 兖州市| 会理县| 麻江县| 镇原县| 大荔县| 嘉黎县| 博爱县| 宜昌市| 安丘市| 富裕县|