找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining for Managers; How to Use Data (Big Richard Boire Book 2014 Palgrave Macmillan, a division of Nature America Inc. 2014 big data.

[復(fù)制鏈接]
查看: 9965|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:43:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining for Managers
副標(biāo)題How to Use Data (Big
編輯Richard Boire
視頻videohttp://file.papertrans.cn/263/262950/262950.mp4
概述This book will help marketing executives, brand managers and IT professional understand what BIG DATA means and how to capture it in a way that is useful for marketing.It explains how the marketing fu
圖書封面Titlebook: Data Mining for Managers; How to Use Data (Big Richard Boire Book 2014 Palgrave Macmillan, a division of Nature America Inc. 2014 big data.
描述Big Data is a growing business trend, but there little advice available on how to use it practically. Written by a data mining expert with over 30 years of experience, this book uses case studies to help marketers, brand managers and IT professionals understand how to capture and measure data for marketing purposes.
出版日期Book 2014
關(guān)鍵詞big data; brand; CRM; data mining; evaluation; growth; Information Technology (IT); marketing; social media;
版次1
doihttps://doi.org/10.1057/9781137406194
isbn_softcover978-1-349-48786-8
isbn_ebook978-1-137-40619-4
copyrightPalgrave Macmillan, a division of Nature America Inc. 2014
The information of publication is updating

書目名稱Data Mining for Managers影響因子(影響力)




書目名稱Data Mining for Managers影響因子(影響力)學(xué)科排名




書目名稱Data Mining for Managers網(wǎng)絡(luò)公開度




書目名稱Data Mining for Managers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Mining for Managers被引頻次




書目名稱Data Mining for Managers被引頻次學(xué)科排名




書目名稱Data Mining for Managers年度引用




書目名稱Data Mining for Managers年度引用學(xué)科排名




書目名稱Data Mining for Managers讀者反饋




書目名稱Data Mining for Managers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:51:43 | 只看該作者
Using Data Mining for CRM Evaluation,odel for new Telco customers. Data mining can also be used to develop overall strategies, such as a broad segmentation strategy. At an even more general level, data mining an be used to determine whether the deployment of a CRM program makes sense
地板
發(fā)表于 2025-3-22 05:01:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:44:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:46:27 | 只看該作者
Data Mining Process: Creation of the Analytical File with External Data Sources,en company is unable to collect solely on the basis of its internal activities. Another perspective on this is that this type of data represents information that is available to the public either free or at some cost. The level of data mining sophistication will determine the extent of these externa
7#
發(fā)表于 2025-3-22 17:55:13 | 只看該作者
8#
發(fā)表于 2025-3-22 23:53:54 | 只看該作者
9#
發(fā)表于 2025-3-23 04:35:08 | 只看該作者
Types and Quality of Data,ing success. Despite the latest advancements in technology and software, which all purport to significantly improve data mining results, data is clearly the driver behind any successful data mining project. Having said that, it is important to understand that there are different types and levels of
10#
發(fā)表于 2025-3-23 07:14:52 | 只看該作者
Segmentation,to segmentation. There are practical approaches and also scientific ones to segmentation. Rather than simply choosing to adopt one approach over the other, the correct approach will depend on the complexity of the given customer base and on the requirements of the current business challenge. For ins
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦州市| 巴青县| 夏邑县| 沁阳市| 平乐县| 惠来县| 胶州市| 微博| 红原县| 泸西县| 榕江县| 武山县| 闸北区| 五原县| 北碚区| 满洲里市| 合阳县| 德阳市| 达尔| 上杭县| 顺义区| 曲松县| 乌海市| 揭阳市| 思南县| 武陟县| 纳雍县| 贺兰县| 沿河| 建瓯市| 崇州市| 遵义县| 临猗县| 清新县| 江孜县| 疏附县| 五指山市| 宜宾市| 元氏县| 贡嘎县| 湄潭县|