找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Knowledge Discovery for Big Data; Methodologies, Chall Wesley W. Chu Book 2014 Springer-Verlag Berlin Heidelberg 2014 Compu

[復(fù)制鏈接]
樓主: EVOKE
31#
發(fā)表于 2025-3-26 22:20:37 | 只看該作者
A Clustering Approach to Constrained Binary Matrix Factorization, binary matrix is minimal. BMF has served as an important tool in dimension reduction for high-dimensional data sets with binary attributes and has been successfully employed in numerous applications. In the existing literature on BMF, the matrix product is not required to be binary. We call this .
32#
發(fā)表于 2025-3-27 01:31:31 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:47 | 只看該作者
Book 2014 of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction
34#
發(fā)表于 2025-3-27 10:10:23 | 只看該作者
35#
發(fā)表于 2025-3-27 16:28:11 | 只看該作者
36#
發(fā)表于 2025-3-27 19:27:57 | 只看該作者
37#
發(fā)表于 2025-3-27 22:02:03 | 只看該作者
38#
發(fā)表于 2025-3-28 06:10:33 | 只看該作者
InfoSearch: A Social Search Engine,he question, within the boundary of only one hop in a social network topology, how can we rank the results shared by friends. We develop . over the Facebook platform to leverage information shared by users in Facebook. We provide a comprehensive study of factors that may have a potential impact on s
39#
發(fā)表于 2025-3-28 09:57:30 | 只看該作者
A Generalized Approach for Social Network Integration and Analysis with Privacy Preservation,cuss aspects of sharing the insensitive and generalized information of social networks to support social network analysis while preserving the privacy at the same time. We discuss the generalization approach to construct a generalized social network in which only insensitive and generalized informat
40#
發(fā)表于 2025-3-28 11:35:39 | 只看該作者
A Clustering Approach to Constrained Binary Matrix Factorization,tionship between the BLP subproblem and clustering to develop an effective 2- approximation algorithm for CBMF when the underlying matrix has very low rank. The proposed algorithm can also provide a 2-approximation to rank-1 UBMF. We also develop a randomized algorithm for CBMF and estimate the appr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛浦县| 竹溪县| 新宾| 桓台县| 峨眉山市| 吉木乃县| 仙游县| 右玉县| 雷山县| 三明市| 措美县| 商丘市| 土默特左旗| 滨海县| 遵义市| 岐山县| 临江市| 汉中市| 桦南县| 察哈| 清丰县| 固原市| 临邑县| 镇康县| 故城县| 凤翔县| 克东县| 湖北省| 巴塘县| 琼中| 兴城市| 铜鼓县| 平安县| 泰州市| 合作市| 浮山县| 长泰县| 灌阳县| 新龙县| 巫溪县| 永宁县|