找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Knowledge Discovery Handbook; Oded Maimon,Lior Rokach Book 20102nd edition Springer Science+Business Media, LLC 2010 Bayes

[復制鏈接]
查看: 23806|回復: 57
樓主
發(fā)表于 2025-3-21 18:16:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining and Knowledge Discovery Handbook
編輯Oded Maimon,Lior Rokach
視頻videohttp://file.papertrans.cn/263/262932/262932.mp4
概述Covers over 25 new topics, as well as most updated information on topics presented in first edition.Includes over 30 new world wide contributors, who are experts in this field.New case studies introdu
圖書封面Titlebook: Data Mining and Knowledge Discovery Handbook;  Oded Maimon,Lior Rokach Book 20102nd edition Springer Science+Business Media, LLC 2010 Bayes
描述.Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data..Data Mining and Knowledge Discovery Handbook, Second Edition. organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This handbook first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security..Data Mining and Knowledge Discovery Handbook, Second Edition. is designed for research scientists, lib
出版日期Book 20102nd edition
關(guān)鍵詞Bayesian networks; KAP_D018; KDD; KLT; KLTcatalog; algorithm; currentjm; data mining; data mining applicatio
版次2
doihttps://doi.org/10.1007/978-0-387-09823-4
isbn_ebook978-0-387-09823-4
copyrightSpringer Science+Business Media, LLC 2010
The information of publication is updating

書目名稱Data Mining and Knowledge Discovery Handbook影響因子(影響力)




書目名稱Data Mining and Knowledge Discovery Handbook影響因子(影響力)學科排名




書目名稱Data Mining and Knowledge Discovery Handbook網(wǎng)絡公開度




書目名稱Data Mining and Knowledge Discovery Handbook網(wǎng)絡公開度學科排名




書目名稱Data Mining and Knowledge Discovery Handbook被引頻次




書目名稱Data Mining and Knowledge Discovery Handbook被引頻次學科排名




書目名稱Data Mining and Knowledge Discovery Handbook年度引用




書目名稱Data Mining and Knowledge Discovery Handbook年度引用學科排名




書目名稱Data Mining and Knowledge Discovery Handbook讀者反饋




書目名稱Data Mining and Knowledge Discovery Handbook讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:23:56 | 只看該作者
Data Cleansing: A Prelude to Knowledge Discovery surveyed and reviewed and a brief overview of existing data cleansing tools is given. A general framework of the data cleansing process is presented as well as a set of general methods that can be used to address the problem. The applicable methods include statistical outlier detection, pattern mat
板凳
發(fā)表于 2025-3-22 03:49:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:18:47 | 只看該作者
Dimension Reduction and Feature Selectionge data sets. Reducing dimensionality (the number of attributed or the number of records) can effectively cut this cost. This chapter focuses a pre-processing step which removes dimension from a given data set before it is fed to a data mining algorithm. This work explains how it is often possible t
6#
發(fā)表于 2025-3-22 13:03:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:09 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:28 | 只看該作者
Supervised Learningsed in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.
9#
發(fā)表于 2025-3-23 03:47:51 | 只看該作者
10#
發(fā)表于 2025-3-23 09:22:40 | 只看該作者
Bayesian Networksntal aspects of Bayesian networks and some of their technical aspects, with a particular emphasis on the methods to induce Bayesian networks from different types of data. Basic notions are illustrated through the detailed descriptions of two Bayesian network applications: one to survey data and one
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东兰县| 陆河县| 平湖市| 吐鲁番市| 房山区| 子长县| 洛阳市| 慈溪市| 南汇区| 卢氏县| 凉城县| 湘西| 宣城市| 洞口县| 甘孜县| 鄯善县| 祥云县| 霍城县| 卢湾区| 徐州市| 多伦县| 司法| 镶黄旗| 枣强县| 罗田县| 唐河县| 长岭县| 凤台县| 昌平区| 陆川县| 嘉禾县| 方正县| 怀柔区| 太康县| 辽中县| 屏边| 南京市| 淳化县| 东山县| 贞丰县| 清水河县|