找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Big Data; 8th International Co Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 12184|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:08:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Mining and Big Data
副標(biāo)題8th International Co
編輯Ying Tan,Yuhui Shi
視頻videohttp://file.papertrans.cn/263/262917/262917.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Mining and Big Data; 8th International Co Ying Tan,Yuhui Shi Conference proceedings 2024 The Editor(s) (if applicable) and The Author(
描述This two-volume set, CCIS 2017 and 2018 constitutes the 8th International Conference, on Data Mining and Big Data, DMBD 2023, held in Sanya, China, in December 2023.. The 38 full papers presented in this two-volume set included in this book were carefully reviewed and selected from 79 submissions.. The papers present the latest research on advantages in theories, technologies, and applications in data mining and big data. The volume covers many aspects of data mining and big data as well as intelligent computing methods applied to all fields of computer science, machine learning, data mining and knowledge discovery, data science, etc..
出版日期Conference proceedings 2024
關(guān)鍵詞artificial intelligence; classification and prediction; clustering tasks; data mining; machine learning;
版次1
doihttps://doi.org/10.1007/978-981-97-0837-6
isbn_softcover978-981-97-0836-9
isbn_ebook978-981-97-0837-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Data Mining and Big Data影響因子(影響力)




書目名稱Data Mining and Big Data影響因子(影響力)學(xué)科排名




書目名稱Data Mining and Big Data網(wǎng)絡(luò)公開度




書目名稱Data Mining and Big Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Mining and Big Data被引頻次




書目名稱Data Mining and Big Data被引頻次學(xué)科排名




書目名稱Data Mining and Big Data年度引用




書目名稱Data Mining and Big Data年度引用學(xué)科排名




書目名稱Data Mining and Big Data讀者反饋




書目名稱Data Mining and Big Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:39:59 | 只看該作者
Comparison of Prediction Methods on Large-Scale and Long-Term Online Live Streaming Dataerience but also in assessing factors impacting audience retention and the overall sustainability of streaming platforms. This study conducts a comprehensive evaluation of machine learning methods for online live streaming traffic prediction using extensive hourly traffic data. The dataset comprises
地板
發(fā)表于 2025-3-22 07:05:16 | 只看該作者
Forecasting Chinese Overnight Stock Index Movement Using Large Language Models with?Market Summary, we investigate the ability of large language models to predict Chinese overnight stock index movement, utilizing market summary gleaned from news media sources. We fine-tune various pre-trained models to compare the performance with that of Generative Pre-training Transformer (GPT) models, specifi
5#
發(fā)表于 2025-3-22 11:52:12 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:21 | 只看該作者
7#
發(fā)表于 2025-3-22 20:03:02 | 只看該作者
A Unified Recombination and?Adversarial Framework for?Machine Reading Comprehensionrequires the machine to understand the semantics better, since most of its corresponding candidates are paraphrases of the references. State-of-the-art methods concentrate on the single type question and design ad-hoc models. Nevertheless, in practical reading comprehension scenarios, given a passag
8#
發(fā)表于 2025-3-23 01:10:41 | 只看該作者
Research on Data Mining Methods in the Field of Quality Problem Analysis Based on BERT Model machine understanding. Most of the current data mining work in the field is based on deep learning models, which is difficult to be integrated into the characteristics of the data in the field. Also, there are still some deficiencies in its accuracy rate and training speed. Therefore, this paper ca
9#
發(fā)表于 2025-3-23 03:38:44 | 只看該作者
Cross-Language Text Search Algorithm Based on Context-Compatible Algorithmsges of technical at home and abroad, cross-lingual searching algorithm becomes particularly important. This article studied on the cross-lingual text searching algorithm based on context compatibility. In this article, context was integrated into searching, to some extent of which ensures the accura
10#
發(fā)表于 2025-3-23 06:59:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 江都市| 东宁县| 牟定县| 芦溪县| 南城县| 海原县| 英超| 余干县| 美姑县| 广州市| 邛崃市| 都匀市| 施甸县| 潢川县| 东乡县| 昭苏县| 蒙自县| 西充县| 北安市| 鹰潭市| 凌云县| 宁阳县| 天津市| 吴川市| 永吉县| 南溪县| 武汉市| 格尔木市| 秭归县| 道真| 辽宁省| 鹰潭市| 莱西市| 美姑县| 华容县| 大英县| 房产| 柳河县| 文登市| 乌什县|