找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Big Data; 7th International Co Ying Tan,Yuhui Shi Conference proceedings 2022 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: probiotic
41#
發(fā)表于 2025-3-28 16:09:39 | 只看該作者
Roland Maximilian Happach,Meike Tilebeinull use of convolution to extract spatial features and use LSTM to obtain temporal features. With this model, we can predict 3D human posture through 2D sequences. Compared with the previous work on classical data sets, our method has good detection results.
42#
發(fā)表于 2025-3-28 19:59:23 | 只看該作者
43#
發(fā)表于 2025-3-29 01:08:31 | 只看該作者
A Deep Reinforcement Learning Approach for?Cooperative Target Defense state space, action space, and rewards of the agents. Three kinds of reward functions are proposed for the attacker and compared by experimental results. Our study provides a good foundation for the cooperative target defense problem.
44#
發(fā)表于 2025-3-29 06:51:27 | 只看該作者
RotatSAGE: A Scalable Knowledge Graph Embedding Model Based on Translation Assumptions and Graph Neu eliminate redundant entity information and simplify the proposed model. In the experiments, the link prediction task is used to evaluate the performance of embedding models. The experiments on four benchmark datasets show the overall performance of RotatSAGE is higher than baseline models.
45#
發(fā)表于 2025-3-29 09:26:14 | 只看該作者
Denoise Network Structure for?User Alignment Across Networks via?Graph Structure Learning sharing encoder and graph neural network for structure denoising are learned using an iterative learning schema. Experiments on real-world datasets demonstrate the outperformance of the proposed framework in terms of efficiency and transferability.
46#
發(fā)表于 2025-3-29 12:20:52 | 只看該作者
47#
發(fā)表于 2025-3-29 16:04:47 | 只看該作者
Pose Sequence Model Using the?Encoder-Decoder Structure for?3D Pose Estimationull use of convolution to extract spatial features and use LSTM to obtain temporal features. With this model, we can predict 3D human posture through 2D sequences. Compared with the previous work on classical data sets, our method has good detection results.
48#
發(fā)表于 2025-3-29 20:36:11 | 只看該作者
Action Recognition for Solo-Militant Based on ResNet and Rule Matchingtion is output according to the 2 levels of classification. The experimental results show that the proposed method in this paper can achieve more effective recognition rate of solo-militant action under small sample data set.
49#
發(fā)表于 2025-3-30 00:21:45 | 只看該作者
50#
發(fā)表于 2025-3-30 05:28:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 泰兴市| 海门市| 乐山市| 青海省| 象山县| 额济纳旗| 甘洛县| 新余市| 双鸭山市| 云霄县| 鲁山县| 黑龙江省| 怀来县| 凌云县| 永新县| 宝应县| 新民市| 侯马市| 扎兰屯市| 泰来县| 哈巴河县| 武穴市| 高邮市| 东明县| 石林| 三穗县| 昆明市| 景宁| 阜城县| 东阳市| 泰和县| 扎赉特旗| 乐昌市| 贡觉县| 兴山县| 革吉县| 永平县| 两当县| 句容市| 绵竹市|