找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining and Big Data; 7th International Co Ying Tan,Yuhui Shi Conference proceedings 2022 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
樓主: probiotic
41#
發(fā)表于 2025-3-28 16:09:39 | 只看該作者
Roland Maximilian Happach,Meike Tilebeinull use of convolution to extract spatial features and use LSTM to obtain temporal features. With this model, we can predict 3D human posture through 2D sequences. Compared with the previous work on classical data sets, our method has good detection results.
42#
發(fā)表于 2025-3-28 19:59:23 | 只看該作者
43#
發(fā)表于 2025-3-29 01:08:31 | 只看該作者
A Deep Reinforcement Learning Approach for?Cooperative Target Defense state space, action space, and rewards of the agents. Three kinds of reward functions are proposed for the attacker and compared by experimental results. Our study provides a good foundation for the cooperative target defense problem.
44#
發(fā)表于 2025-3-29 06:51:27 | 只看該作者
RotatSAGE: A Scalable Knowledge Graph Embedding Model Based on Translation Assumptions and Graph Neu eliminate redundant entity information and simplify the proposed model. In the experiments, the link prediction task is used to evaluate the performance of embedding models. The experiments on four benchmark datasets show the overall performance of RotatSAGE is higher than baseline models.
45#
發(fā)表于 2025-3-29 09:26:14 | 只看該作者
Denoise Network Structure for?User Alignment Across Networks via?Graph Structure Learning sharing encoder and graph neural network for structure denoising are learned using an iterative learning schema. Experiments on real-world datasets demonstrate the outperformance of the proposed framework in terms of efficiency and transferability.
46#
發(fā)表于 2025-3-29 12:20:52 | 只看該作者
47#
發(fā)表于 2025-3-29 16:04:47 | 只看該作者
Pose Sequence Model Using the?Encoder-Decoder Structure for?3D Pose Estimationull use of convolution to extract spatial features and use LSTM to obtain temporal features. With this model, we can predict 3D human posture through 2D sequences. Compared with the previous work on classical data sets, our method has good detection results.
48#
發(fā)表于 2025-3-29 20:36:11 | 只看該作者
Action Recognition for Solo-Militant Based on ResNet and Rule Matchingtion is output according to the 2 levels of classification. The experimental results show that the proposed method in this paper can achieve more effective recognition rate of solo-militant action under small sample data set.
49#
發(fā)表于 2025-3-30 00:21:45 | 只看該作者
50#
發(fā)表于 2025-3-30 05:28:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 宣汉县| 柞水县| 辽中县| 巢湖市| 略阳县| 开阳县| 布尔津县| 上栗县| 海南省| 翁牛特旗| 巴林左旗| 海丰县| 东辽县| 桓仁| 长沙市| 双柏县| 齐河县| 汾西县| 达州市| 特克斯县| 巴林左旗| 桂东县| 阜城县| 常德市| 桐梓县| 班玛县| 东至县| 都江堰市| 调兵山市| 比如县| 崇礼县| 新沂市| 绥阳县| 常宁市| 贞丰县| 威远县| 句容市| 垫江县| 封丘县| 成都市|