找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining; 15th Australasian Co Yee Ling Boo,David Stirling,Graham Williams Conference proceedings 2018 Springer Nature Singapore Pte Ltd

[復(fù)制鏈接]
查看: 13198|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:37:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Mining
副標(biāo)題15th Australasian Co
編輯Yee Ling Boo,David Stirling,Graham Williams
視頻videohttp://file.papertrans.cn/263/262900/262900.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Mining; 15th Australasian Co Yee Ling Boo,David Stirling,Graham Williams Conference proceedings 2018 Springer Nature Singapore Pte Ltd
描述.This book constitutes the refereed proceedings of the 15th Australasian Conference on Data Mining, AusDM 2017, held in Melbourne, VIC, Australia, in August 2017..The 17 revised full papers presented together with?11 research track papers and 6 application track papers?were carefully reviewed and selected from 31 submissions. The papers are organized in topical sections on?clustering and classification;?big data;?time series;?outlier detection and applications;?social media and applications..
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; classification; data mining; decision trees; machine learning; signal processing
版次1
doihttps://doi.org/10.1007/978-981-13-0292-3
isbn_softcover978-981-13-0291-6
isbn_ebook978-981-13-0292-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Data Mining影響因子(影響力)




書目名稱Data Mining影響因子(影響力)學(xué)科排名




書目名稱Data Mining網(wǎng)絡(luò)公開(kāi)度




書目名稱Data Mining網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Data Mining被引頻次




書目名稱Data Mining被引頻次學(xué)科排名




書目名稱Data Mining年度引用




書目名稱Data Mining年度引用學(xué)科排名




書目名稱Data Mining讀者反饋




書目名稱Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:56 | 只看該作者
Rank Forest: Systematic Attribute Sub-spacing in Decision Forestjor shortcomings of decision trees have been pointed out: (1) instability, and (2) high computational cost. These problems have been addressed to some extent through ensemble learning techniques such as Random Forest. Unlike decision trees where the whole attribute space of a dataset is used to disc
板凳
發(fā)表于 2025-3-22 02:21:26 | 只看該作者
Performance Evaluation of a Distributed Clustering Approach for Spatial Datasetsnot have as a whole. Therefore, new data analytics frameworks are needed to deal with the big data challenges such as volumes, velocity, veracity, variety of the data. Distributed data mining constitutes a promising approach for big data sets, as they are usually produced in distributed locations, a
地板
發(fā)表于 2025-3-22 05:03:51 | 只看該作者
Patched Completed Local Binary Pattern is an Effective Method for Neuroblastoma Histological Image C existing computer-aided histological image classification methods that use global features. To tackle this problem, we propose a new Patched Completed Local Binary Pattern (PCLBP) method combining Sign Binary Pattern (SBP) and Magnitude Binary Pattern (MBP) within local patches to build feature vec
5#
發(fā)表于 2025-3-22 10:21:03 | 只看該作者
An Improved Naive Bayes Classifier-Based Noise Detection Technique for Classifying User Phone Call B outgoing), with many potential negative consequences. The classification accuracy may decrease and the complexity of the classifiers may increase due to the number of redundant training samples. To detect such noisy instances from a training dataset, researchers use naive Bayes classifier (NBC) as
6#
發(fā)表于 2025-3-22 14:52:22 | 只看該作者
A Two-Sample Kolmogorov-Smirnov-Like Test for Big Datauseful EDA tools impractical and ineffective. Among such useful tools is the two-sample Kolmogorov-Smirnov (TS-KS) goodness-of-fit (GoF) test for assessing whether or not two samples arose from the same population. A TS-KS like testing procedure is constructed using chunked and averaged (CA) estimat
7#
發(fā)表于 2025-3-22 18:14:50 | 只看該作者
Exploiting Redundancy, Recurrency and Parallelism: How to Link Millions of Addresses with Ten Lines ked social problems are best tackled by forming partnerships founded on large-scale data fusion. Names and addresses are the most common attributes on which data from different government agencies can be linked. In this paper, we focus on the problem of address linking. Linkage is particularly probl
8#
發(fā)表于 2025-3-23 00:18:36 | 只看該作者
9#
發(fā)表于 2025-3-23 03:43:10 | 只看該作者
10#
發(fā)表于 2025-3-23 08:08:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳县| 桂阳县| 五台县| 焉耆| 漳州市| 长沙县| 长阳| 石景山区| 明光市| 罗源县| 剑河县| 四平市| 突泉县| 台州市| 麻江县| 额敏县| 长子县| 马边| 南宫市| 天津市| 萍乡市| 绥江县| 安化县| 苍山县| 呼玛县| 吴桥县| 淅川县| 广南县| 聂荣县| 德格县| 巴彦淖尔市| 满洲里市| 洛南县| 安平县| 方正县| 沂南县| 清涧县| 杨浦区| 南丹县| 广西| 铜山县|