找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining; Special Issue in Ann Robert Stahlbock,Sven F. Crone,Stefan Lessmann Book 2010 Springer-Verlag US 2010 Business Intelligence.Te

[復(fù)制鏈接]
查看: 53280|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:16:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Mining
副標(biāo)題Special Issue in Ann
編輯Robert Stahlbock,Sven F. Crone,Stefan Lessmann
視頻videohttp://file.papertrans.cn/263/262890/262890.mp4
概述Provides a state-of-art, up-to-the moment, view of the evolving field of datamining.Special publication of the 2007 International Conference on Data Mining (DMIN 07).Features a combination of rigorous
叢書名稱Annals of Information Systems
圖書封面Titlebook: Data Mining; Special Issue in Ann Robert Stahlbock,Sven F. Crone,Stefan Lessmann Book 2010 Springer-Verlag US 2010 Business Intelligence.Te
描述.Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applications, from medical decision making, bioinformatics, web-usage mining, and text and image recognition to prominent business applications in corporate planning, direct marketing, and credit scoring. Research in information systems equally reflects this inter- and multidisciplinary approach, thereby advocating a series of papers at the intersection of data mining and information systems research....This special issue of Annals of Information Systems contains original papers and substantial extensions of selected papers from the 2007 and 2008 International Conference on Data Mining (DMIN’07 and DMIN’08, Las Vegas, NV) that have been rigorously peer-reviewed. The issue brings together topics on both information systems and data mining, and aims to give the reader a current snapshot of the contemporary research and state of the art practice in data mining..
出版日期Book 2010
關(guān)鍵詞Business Intelligence; Text Mining; classification; data analysis; data mining; knowledge discovery; stati
版次1
doihttps://doi.org/10.1007/978-1-4419-1280-0
isbn_softcover978-1-4419-1279-4
isbn_ebook978-1-4419-1280-0Series ISSN 1934-3221 Series E-ISSN 1934-3213
issn_series 1934-3221
copyrightSpringer-Verlag US 2010
The information of publication is updating

書目名稱Data Mining影響因子(影響力)




書目名稱Data Mining影響因子(影響力)學(xué)科排名




書目名稱Data Mining網(wǎng)絡(luò)公開度




書目名稱Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Mining被引頻次




書目名稱Data Mining被引頻次學(xué)科排名




書目名稱Data Mining年度引用




書目名稱Data Mining年度引用學(xué)科排名




書目名稱Data Mining讀者反饋




書目名稱Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:35:24 | 只看該作者
地板
發(fā)表于 2025-3-22 08:12:29 | 只看該作者
Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closureient implementations based on the antimonotony property of the support. But candidate set generation is still costly and many rules are uninteresting or redundant. In addition one can miss interesting rules like nuggets. We are thus facing a complexity issue and a quality issue..One solution is to g
5#
發(fā)表于 2025-3-22 09:37:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:08:57 | 只看該作者
An Extended Study of the Discriminant Random Forested decisions. Many approaches have been developed, but one of the most successful in recent times is the random forest. The discriminant random forest is a novel extension of the random forest classification methodology that leverages linear discriminant analysis to performmultivariate node splittin
7#
發(fā)表于 2025-3-22 18:12:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:47:58 | 只看該作者
Effects of Oversampling Versus Cost-Sensitive Learning for Bayesian and SVM Classifiersling method called “generative oversampling,” which creates new data points by learning parameters for an assumed probability distribution. We then examine theoretically and empirically the effects of different forms of resampling and their relationship to cost-sensitive learning on different classi
9#
發(fā)表于 2025-3-23 03:40:31 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄城县| 九龙坡区| 吴堡县| 蛟河市| 苍溪县| 永和县| 宁海县| 威宁| 南安市| 湘潭市| 漯河市| 崇仁县| 武义县| 阜新市| 香港| 宁蒗| 九龙县| 梅州市| 德化县| 泾源县| 大英县| 顺昌县| 墨玉县| 屯留县| 长沙县| 深水埗区| 涡阳县| 兴山县| 灌云县| 蛟河市| 延川县| 全椒县| 多伦县| 焦作市| 张家口市| 定安县| 资中县| 鱼台县| 珲春市| 昭觉县| 隆化县|