找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Management in Machine Learning Systems; Matthias Boehm,Arun Kumar,Jun Yang Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
查看: 41878|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:26:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Management in Machine Learning Systems
編輯Matthias Boehm,Arun Kumar,Jun Yang
視頻videohttp://file.papertrans.cn/263/262870/262870.mp4
叢書(shū)名稱Synthesis Lectures on Data Management
圖書(shū)封面Titlebook: Data Management in Machine Learning Systems;  Matthias Boehm,Arun Kumar,Jun Yang Book 2019 Springer Nature Switzerland AG 2019
描述.Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques...In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators;data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, an
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01869-5
isbn_softcover978-3-031-00741-5
isbn_ebook978-3-031-01869-5Series ISSN 2153-5418 Series E-ISSN 2153-5426
issn_series 2153-5418
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Data Management in Machine Learning Systems影響因子(影響力)




書(shū)目名稱Data Management in Machine Learning Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Management in Machine Learning Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Management in Machine Learning Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Management in Machine Learning Systems被引頻次




書(shū)目名稱Data Management in Machine Learning Systems被引頻次學(xué)科排名




書(shū)目名稱Data Management in Machine Learning Systems年度引用




書(shū)目名稱Data Management in Machine Learning Systems年度引用學(xué)科排名




書(shū)目名稱Data Management in Machine Learning Systems讀者反饋




書(shū)目名稱Data Management in Machine Learning Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:30:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:57:59 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:35 | 只看該作者
5#
發(fā)表于 2025-3-22 12:23:09 | 只看該作者
6#
發(fā)表于 2025-3-22 15:26:58 | 只看該作者
Marisol J. Voncken,Susan M. B?gelsnal model and query language seem to be a poor fit with ML, as most ML algorithms look very different from and oftentimes far more complicated than database queries. Thus, database systems have traditionally served as a data store for ML; the ML algorithm would pull the data out from the database, t
7#
發(fā)表于 2025-3-22 18:14:14 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:07 | 只看該作者
Cognitive Psychology: What Is In The Box?tems apply a broad range of rewrites and optimization techniques to improve the efficiency of ML programs. In this chapter, we first categorize existing systems according to their optimization scope, survey important classes of logical and physical rewrites, and also discuss means of adapting execut
9#
發(fā)表于 2025-3-23 03:19:21 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:25 | 只看該作者
Evolution from Linear to Systems Thinkingent data access in ML systems. These techniques bear strong similarity with corresponding data access methods in database systems, with the difference of focusing on dense and sparse matrices or tensors, as well as specific access patterns of ML workloads. In this chapter, we survey existing techniq
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米泉市| 日照市| 子长县| 奇台县| 房山区| 芮城县| 大荔县| 察雅县| 大邑县| 宿迁市| 南平市| 铁力市| 凌海市| 曲靖市| 广昌县| 商水县| 东乡| 阜宁县| 三明市| 灵台县| 犍为县| 四子王旗| 台中县| 广水市| 都江堰市| 石景山区| 泸溪县| 阜平县| 五台县| 龙井市| 和平县| 加查县| 分宜县| 宜春市| 万盛区| 毕节市| 千阳县| 呼伦贝尔市| 都兰县| 楚雄市| 西充县|