找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering for Smart Systems; Proceedings of SSIC Priyadarsi Nanda,Vivek Kumar Verma,Arka Prokash Ma Conference proceedings 2022 The

[復(fù)制鏈接]
樓主: 根深蒂固
51#
發(fā)表于 2025-3-30 10:33:22 | 只看該作者
Gordon J. Alderink,Blake M. Ashbyted investigators communities, intended to increase the connectivity of data network, principally in an area where formations of traditional networks are unfeasible. However, this network is capable to constitute and heal itself without having a predetermined infrastructure, but with high mobility a
52#
發(fā)表于 2025-3-30 13:24:49 | 只看該作者
53#
發(fā)表于 2025-3-30 18:52:04 | 只看該作者
54#
發(fā)表于 2025-3-30 20:56:05 | 只看該作者
Priyadarsi Nanda,Vivek Kumar Verma,Arka Prokash MaPresents recent research in the field of data engineering.Discusses the outcomes of SSIC 2021, held in Manipal University Jaipur, India.Serves as a reference guide for researchers and practitioners in
55#
發(fā)表于 2025-3-31 03:34:07 | 只看該作者
Lecture Notes in Networks and Systemshttp://image.papertrans.cn/d/image/262793.jpg
56#
發(fā)表于 2025-3-31 08:32:02 | 只看該作者
2367-3370 es as a reference guide for researchers and practitioners inThis book features original papers from the 3rd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2021), organized by Manipal University, Jaipur, India, during January 22–23, 2021. It discusses scientific works
57#
發(fā)表于 2025-3-31 12:11:59 | 只看該作者
58#
發(fā)表于 2025-3-31 14:34:15 | 只看該作者
Classification and Its Alternatives demand of business nowadays and is a stimulating task. Machine learning and deep learning are spreading its wings in this field for automatic classification of such data and documents. This paper delves into contribution of the researchers in Indian Languages for information retrieval and classification with machine learning.
59#
發(fā)表于 2025-3-31 21:33:03 | 只看該作者
Object Recognition in a Cluttered Scene,lly or partially occluded. In this paper, an object recognition system based on deep learning techniques is proposed. RetinaNet Model has been used for object detection and identification. RetinaNet model has demonstrated to work well with both small scale as well as dense objects.
60#
發(fā)表于 2025-3-31 22:48:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹市| 沈丘县| 永丰县| 香河县| 晋城| 五常市| 和平县| 于都县| 连山| 乌兰察布市| 兰溪市| 西乡县| 娱乐| 桐梓县| 黑龙江省| 房产| 葫芦岛市| 石阡县| 庐江县| 安塞县| 微山县| 英德市| 贡觉县| 双城市| 泰宁县| 资中县| 彩票| 车致| 交城县| 井冈山市| 噶尔县| 黔西| 额济纳旗| 津市市| 黔南| 龙江县| 临安市| 高唐县| 光山县| 钦州市| 中方县|