找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering and Intelligent Computing; Proceedings of ICICC Vikrant Bhateja,Suresh Chandra Satapathy,V. N. Man Conference proceedings

[復(fù)制鏈接]
樓主: 婉言
31#
發(fā)表于 2025-3-27 00:04:59 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:52 | 只看該作者
4.2?Effective Interdisciplinary Teamserent settings has shown that only classes.dex files of apks are sufficient for Android malware detection. The proposed deep learning framework with convolutional neural networks could achieve 97.76% accuracy in detecting Android malware with minimal information requirement.
34#
發(fā)表于 2025-3-27 12:38:59 | 只看該作者
Malware Family Classification Model Using Convolutional Neural Network,s proposed. Malware family recognition is formulated as a multi-classification task, and an accurate solution is obtained by training convolutional neural network with images of malware executable files. Ten families of malware have been considered here for building the models. The image dataset wit
35#
發(fā)表于 2025-3-27 15:02:23 | 只看該作者
Malware and Benign Detection Using Convolutional Neural Network,input. The convolutional neural networks-based classification model proves accuracy of 93% in discriminate from malware and benign files. The convolutional neural network-based malware detection model has higher performance when compared with deep neural network classification model trained with GIS
36#
發(fā)表于 2025-3-27 19:13:26 | 只看該作者
37#
發(fā)表于 2025-3-28 00:13:56 | 只看該作者
Plant Health Report Through Advanced Convolution Neural Network Methodology,ble of identifying the disease with higher efficiency and is able to suggest the measures that farmers can take to avoid the pest infection and diseases that have been identified in their plants, to grow a healthy plant for high yield. The disease detection is done using the classifier present in th
38#
發(fā)表于 2025-3-28 05:53:39 | 只看該作者
39#
發(fā)表于 2025-3-28 07:58:09 | 只看該作者
Pediatric Skeletal Age Assessment Using Deep Learning Proceedings,oal is to leverage deep learning visualization techniques for better interpretation of our results. Overall, our proposed model achieved a competitive MAE of 7.61?months on the test set provided by Radiological Society of North America (RSNA).
40#
發(fā)表于 2025-3-28 10:40:11 | 只看該作者
A Novel Model for Disease Identification in Mango Plant Leaves Using Multimodal Conventional and Te of the diseases using conventional methods is time consuming, and there can be over usage of chemicals to overcome the diseases. The technological methods along with conventional methods can be used to identify the diseases efficiently and treat the disease time and cost effectively. This paper giv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡山| 利辛县| 大邑县| 广水市| 东台市| 玉溪市| 丰宁| 黔西县| 洪洞县| 望都县| 元朗区| 芒康县| 吴川市| 泰安市| 景宁| 东安县| 固镇县| 东光县| 灵川县| 滨海县| 自治县| 武冈市| 井陉县| 长岛县| 甘孜县| 灵寿县| 五原县| 日照市| 汉寿县| 卫辉市| 丹凤县| 法库县| 建德市| 神农架林区| 旌德县| 德安县| 南陵县| 牙克石市| 乌海市| 宜君县| 西宁市|