找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering and Intelligent Computing; Proceedings of ICICC Vikrant Bhateja,Suresh Chandra Satapathy,V. N. Man Conference proceedings

[復(fù)制鏈接]
樓主: 婉言
31#
發(fā)表于 2025-3-27 00:04:59 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:52 | 只看該作者
4.2?Effective Interdisciplinary Teamserent settings has shown that only classes.dex files of apks are sufficient for Android malware detection. The proposed deep learning framework with convolutional neural networks could achieve 97.76% accuracy in detecting Android malware with minimal information requirement.
34#
發(fā)表于 2025-3-27 12:38:59 | 只看該作者
Malware Family Classification Model Using Convolutional Neural Network,s proposed. Malware family recognition is formulated as a multi-classification task, and an accurate solution is obtained by training convolutional neural network with images of malware executable files. Ten families of malware have been considered here for building the models. The image dataset wit
35#
發(fā)表于 2025-3-27 15:02:23 | 只看該作者
Malware and Benign Detection Using Convolutional Neural Network,input. The convolutional neural networks-based classification model proves accuracy of 93% in discriminate from malware and benign files. The convolutional neural network-based malware detection model has higher performance when compared with deep neural network classification model trained with GIS
36#
發(fā)表于 2025-3-27 19:13:26 | 只看該作者
37#
發(fā)表于 2025-3-28 00:13:56 | 只看該作者
Plant Health Report Through Advanced Convolution Neural Network Methodology,ble of identifying the disease with higher efficiency and is able to suggest the measures that farmers can take to avoid the pest infection and diseases that have been identified in their plants, to grow a healthy plant for high yield. The disease detection is done using the classifier present in th
38#
發(fā)表于 2025-3-28 05:53:39 | 只看該作者
39#
發(fā)表于 2025-3-28 07:58:09 | 只看該作者
Pediatric Skeletal Age Assessment Using Deep Learning Proceedings,oal is to leverage deep learning visualization techniques for better interpretation of our results. Overall, our proposed model achieved a competitive MAE of 7.61?months on the test set provided by Radiological Society of North America (RSNA).
40#
發(fā)表于 2025-3-28 10:40:11 | 只看該作者
A Novel Model for Disease Identification in Mango Plant Leaves Using Multimodal Conventional and Te of the diseases using conventional methods is time consuming, and there can be over usage of chemicals to overcome the diseases. The technological methods along with conventional methods can be used to identify the diseases efficiently and treat the disease time and cost effectively. This paper giv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 天峨县| 阿图什市| 若尔盖县| 五大连池市| 鄂州市| 青川县| 建平县| 环江| 曲周县| 瓮安县| 玉环县| 安塞县| 舞阳县| 应用必备| 蓝田县| 阳曲县| 北海市| 和龙市| 宣武区| 监利县| 西吉县| 曲阜市| 离岛区| 淳安县| 越西县| 密云县| 双鸭山市| 商南县| 洛扎县| 安阳县| 赫章县| 伊宁县| 文山县| 越西县| 桃江县| 沁阳市| 永康市| 乌兰浩特市| 黔江区| 冷水江市|