找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering and Intelligent Computing; Proceedings of ICICC Vikrant Bhateja,Suresh Chandra Satapathy,V. N. Man Conference proceedings

[復(fù)制鏈接]
樓主: 婉言
31#
發(fā)表于 2025-3-27 00:04:59 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:31 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:52 | 只看該作者
4.2?Effective Interdisciplinary Teamserent settings has shown that only classes.dex files of apks are sufficient for Android malware detection. The proposed deep learning framework with convolutional neural networks could achieve 97.76% accuracy in detecting Android malware with minimal information requirement.
34#
發(fā)表于 2025-3-27 12:38:59 | 只看該作者
Malware Family Classification Model Using Convolutional Neural Network,s proposed. Malware family recognition is formulated as a multi-classification task, and an accurate solution is obtained by training convolutional neural network with images of malware executable files. Ten families of malware have been considered here for building the models. The image dataset wit
35#
發(fā)表于 2025-3-27 15:02:23 | 只看該作者
Malware and Benign Detection Using Convolutional Neural Network,input. The convolutional neural networks-based classification model proves accuracy of 93% in discriminate from malware and benign files. The convolutional neural network-based malware detection model has higher performance when compared with deep neural network classification model trained with GIS
36#
發(fā)表于 2025-3-27 19:13:26 | 只看該作者
37#
發(fā)表于 2025-3-28 00:13:56 | 只看該作者
Plant Health Report Through Advanced Convolution Neural Network Methodology,ble of identifying the disease with higher efficiency and is able to suggest the measures that farmers can take to avoid the pest infection and diseases that have been identified in their plants, to grow a healthy plant for high yield. The disease detection is done using the classifier present in th
38#
發(fā)表于 2025-3-28 05:53:39 | 只看該作者
39#
發(fā)表于 2025-3-28 07:58:09 | 只看該作者
Pediatric Skeletal Age Assessment Using Deep Learning Proceedings,oal is to leverage deep learning visualization techniques for better interpretation of our results. Overall, our proposed model achieved a competitive MAE of 7.61?months on the test set provided by Radiological Society of North America (RSNA).
40#
發(fā)表于 2025-3-28 10:40:11 | 只看該作者
A Novel Model for Disease Identification in Mango Plant Leaves Using Multimodal Conventional and Te of the diseases using conventional methods is time consuming, and there can be over usage of chemicals to overcome the diseases. The technological methods along with conventional methods can be used to identify the diseases efficiently and treat the disease time and cost effectively. This paper giv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济宁市| 曲周县| 工布江达县| 和静县| 铜山县| 东兴市| 诸城市| 松潘县| 武清区| 奉节县| 陆丰市| 应用必备| 林芝县| 邯郸县| 正宁县| 轮台县| 且末县| 楚雄市| 沙湾县| 应城市| 岐山县| 天柱县| 陆丰市| 巫溪县| 高密市| 临安市| 阜宁县| 佛学| 卓资县| 平罗县| 于田县| 日照市| 临漳县| 乐清市| 江津市| 广平县| 磴口县| 灵璧县| 师宗县| 吉木乃县| 正镶白旗|