找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Classification and Incremental Clustering in Data Mining and Machine Learning; Sanjay Chakraborty,Sk Hafizul Islam,Debabrata Sama Boo

[復(fù)制鏈接]
查看: 41717|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:49:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning
編輯Sanjay Chakraborty,Sk Hafizul Islam,Debabrata Sama
視頻videohttp://file.papertrans.cn/263/262748/262748.mp4
概述Provides a comprehensive review of various data mining techniques and architecture.Presents hands-on coding examples using three and popular coding platforms: R, Python, and Java.Includes case-studies
叢書名稱EAI/Springer Innovations in Communication and Computing
圖書封面Titlebook: Data Classification and Incremental Clustering in Data Mining and Machine Learning;  Sanjay Chakraborty,Sk Hafizul Islam,Debabrata Sama Boo
描述This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Na?ve Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.
出版日期Book 2022
關(guān)鍵詞Data Mining; Machine Learning; Supervised Learning; Clustering; Classification; Unsupervised Learning
版次1
doihttps://doi.org/10.1007/978-3-030-93088-2
isbn_softcover978-3-030-93090-5
isbn_ebook978-3-030-93088-2Series ISSN 2522-8595 Series E-ISSN 2522-8609
issn_series 2522-8595
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning影響因子(影響力)




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning網(wǎng)絡(luò)公開度




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning被引頻次




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning被引頻次學(xué)科排名




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning年度引用




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning年度引用學(xué)科排名




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning讀者反饋




書目名稱Data Classification and Incremental Clustering in Data Mining and Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:08 | 只看該作者
地板
發(fā)表于 2025-3-22 06:51:26 | 只看該作者
5#
發(fā)表于 2025-3-22 12:46:27 | 只看該作者
Introduction to Data Mining and Knowledge Discovery,es. It has an enormous use to make strategic decisions by business executives after analyzing the hidden truth of data. Data mining one of the steps in the knowledge-creation process. A data mining system consists of a data warehouse, a database server, a data mining engine, a pattern analysis modul
6#
發(fā)表于 2025-3-22 13:57:15 | 只看該作者
A Brief Concept on Machine Learning,ior facts or experiences. Most of us utilize various machine learning techniques every day when we use Netflix, YouTube, Spotify recommendation algorithms, and Google and Yahoo search engines and voice assistants like Google Home and Amazon Alexa. All of the data is labeled, and algorithms learn to
7#
發(fā)表于 2025-3-22 17:50:26 | 只看該作者
8#
發(fā)表于 2025-3-22 21:27:40 | 只看該作者
Data Classification and Incremental Clustering Using Unsupervised Learning,to hidden patterns; unsupervised learning is used to find clusters, and the resulting system is a data concept. As a result, clustering is the unsupervised discovery of a hidden data concept. The computing needs of clustering analysis are increased because?data mining deals with massive databases. A
9#
發(fā)表于 2025-3-23 01:40:42 | 只看該作者
Research Intention Towards Incremental Clustering, new data into a similar group of clusters. The existing K-means and DBSCAN clustering algorithms are inefficient to handle the large dynamic databases because, for every change in the incremental database, they simply run their algorithms repeatedly, taking lots of time to properly cluster those ne
10#
發(fā)表于 2025-3-23 07:13:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 10:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 武强县| 增城市| 海淀区| 大同市| 济阳县| 甘德县| 白玉县| 兴化市| 施秉县| 将乐县| 青神县| 洛浦县| 兴安盟| 许昌县| 佛坪县| 玉田县| 柳林县| 上饶县| 蓬莱市| 大悟县| 黎平县| 龙海市| 集安市| 齐齐哈尔市| 始兴县| 闵行区| 天镇县| 泸溪县| 洛阳市| 永吉县| 泸水县| 宁阳县| 西乌珠穆沁旗| 密山市| 哈巴河县| 庆云县| 冀州市| 丹巴县| 高碑店市| 衡阳县|