找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Augmentation, Labelling, and Imperfections; Third MICCAI Worksho Yuan Xue,Chen Chen,Yihao Liu Conference proceedings 2024 The Editor(s

[復(fù)制鏈接]
查看: 23390|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:05:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Augmentation, Labelling, and Imperfections
副標題Third MICCAI Worksho
編輯Yuan Xue,Chen Chen,Yihao Liu
視頻videohttp://file.papertrans.cn/263/262734/262734.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Data Augmentation, Labelling, and Imperfections; Third MICCAI Worksho Yuan Xue,Chen Chen,Yihao Liu Conference proceedings 2024 The Editor(s
描述.This LNCS conference volume constitutes the proceedings of the 3rd International Workshop on..Data Augmentation, Labeling, and Imperfections (DALI 2023), held on October 12, 2023, in Vancouver, Canada, in conjunction with the 26th International..Conference on Medical Image Computing and Computer Assisted Intervention..(MICCAI 2023). The 16 full papers together in this volume were carefully reviewed and selected from 23 submissions...The conference fosters a collaborative environment for addressing the critical challenges associated with medical data, particularly focusing on data, labeling, and dealing with data imperfections in the context of medical image analysis..
出版日期Conference proceedings 2024
關(guān)鍵詞artificial intelligence; bioinformatics; color image processing; color images; computer systems; computer
版次1
doihttps://doi.org/10.1007/978-3-031-58171-7
isbn_softcover978-3-031-58170-0
isbn_ebook978-3-031-58171-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data Augmentation, Labelling, and Imperfections影響因子(影響力)




書目名稱Data Augmentation, Labelling, and Imperfections影響因子(影響力)學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections網(wǎng)絡(luò)公開度




書目名稱Data Augmentation, Labelling, and Imperfections網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections被引頻次




書目名稱Data Augmentation, Labelling, and Imperfections被引頻次學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections年度引用




書目名稱Data Augmentation, Labelling, and Imperfections年度引用學(xué)科排名




書目名稱Data Augmentation, Labelling, and Imperfections讀者反饋




書目名稱Data Augmentation, Labelling, and Imperfections讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:02 | 只看該作者
,Zero-Shot Learning of?Individualized Task Contrast Prediction from?Resting-State Functional Connect large language models using special inputs to obtain answers for novel natural language processing tasks, inputting group-average contrasts guides the OPIC?model to generalize to novel tasks unseen in training. Experimental results show that OPIC’s predictions for novel tasks are not only better th
板凳
發(fā)表于 2025-3-22 01:17:21 | 只看該作者
,Microscopy Image Segmentation via?Point and?Shape Regularized Data Synthesis,d by object level consistency; (3) the pseudo masks along with the synthetic images then constitute a pairwise dataset for training an ad-hoc segmentation model. On the public MoNuSeg dataset, our synthesis pipeline produces more diverse and realistic images than baseline models while maintaining hi
地板
發(fā)表于 2025-3-22 04:45:48 | 只看該作者
,A Unified Approach to?Learning with?Label Noise and?Unsupervised Confidence Approximation,datasets. UCA’s prediction accuracy increases with the required level of confidence. UCA-equipped networks are on par with the state-of-the-art in noisy label training when used in regular, full coverage mode. However, they have a risk-management facility, showing flawless risk-coverage curves with
5#
發(fā)表于 2025-3-22 12:40:37 | 只看該作者
Transesophageal Echocardiography Generation Using Anatomical Models,ynthetic images quantitatively using the Fréchet Inception Distance (FID) Score and qualitatively through a human perception quiz involving expert cardiologists and the average researcher..In this study, we achieve a dice score improvement of up to 10% when we augment datasets with our synthetic ima
6#
發(fā)表于 2025-3-22 16:44:12 | 只看該作者
,Data Augmentation Based on?DiscrimDiff for?Histopathology Image Classification,ing significance for pathologists in clinical diagnosis. Therefore, we visualize histomorphological features related to classification, which can be used to assist pathologist-in-training education and improve the understanding of histomorphology.
7#
發(fā)表于 2025-3-22 20:55:18 | 只看該作者
8#
發(fā)表于 2025-3-22 21:19:23 | 只看該作者
,Knowledge Graph Embeddings for?Multi-lingual Structured Representations of?Radiology Reports,ly more accurate, without reliance on large pre-training datasets. We show the use of this embedding on two tasks namely disease classification of X-ray reports and image classification. For disease classification our model is competitive with its BERT-based counterparts, while being magnitudes smal
9#
發(fā)表于 2025-3-23 01:51:07 | 只看該作者
,Masked Conditional Diffusion Models for?Image Analysis with?Application to?Radiographic Diagnosis ombines the weighted segmentation masks of the tibias and the CML fracture sites as additional conditions for classifier guidance. The augmented images from our model improved the performances of ResNet-34 in classifying normal radiographs and those with CMLs. Further, the augmented images and their
10#
發(fā)表于 2025-3-23 06:17:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芒康县| 柘城县| 沧源| 泰安市| 南昌市| 都匀市| 田阳县| 重庆市| 修水县| 屏山县| 渭源县| 高安市| 通河县| 囊谦县| 营山县| 含山县| 准格尔旗| 台州市| 杂多县| 武宣县| 汪清县| 莫力| 雅安市| 三都| 凤庆县| 榆树市| 郁南县| 墨竹工卡县| 普格县| 金坛市| 绥宁县| 澄城县| 黄骅市| 即墨市| 远安县| 万源市| 武穴市| 镇平县| 如皋市| 通渭县| 临高县|