找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Association for Multi-Object Visual Tracking; Margrit Betke,Zheng Wu Book 2017 Springer Nature Switzerland AG 2017

[復(fù)制鏈接]
查看: 14784|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:02:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Association for Multi-Object Visual Tracking
編輯Margrit Betke,Zheng Wu
視頻videohttp://file.papertrans.cn/263/262733/262733.mp4
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Data Association for Multi-Object Visual Tracking;  Margrit Betke,Zheng Wu Book 2017 Springer Nature Switzerland AG 2017
描述.In the human quest for scientific knowledge, empirical evidence is collected by visual perception. Tracking with computer vision takes on the important role to reveal complex patterns of motion that exist in the world we live in. Multi-object tracking algorithms provide new information on how groups and individual group members move through three-dimensional space. They enable us to study in depth the relationships between individuals in moving groups. These may be interactions of pedestrians on a crowded sidewalk, living cells under a microscope, or bats emerging in large numbers from a cave. Being able to track pedestrians is important for urban planning; analysis of cell interactions supports research on biomaterial design; and the study of bat and bird flight can guide the engineering of aircraft. We were inspired by this multitude of applications to consider the crucial component needed to advance a single-object tracking system to a multi-object tracking system—data association..Data association in the most general sense is the process of matching information about newly observed objects with information that was previously observed about them. This information may be about
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-031-01816-9
isbn_softcover978-3-031-00688-3
isbn_ebook978-3-031-01816-9Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightSpringer Nature Switzerland AG 2017
The information of publication is updating

書目名稱Data Association for Multi-Object Visual Tracking影響因子(影響力)




書目名稱Data Association for Multi-Object Visual Tracking影響因子(影響力)學(xué)科排名




書目名稱Data Association for Multi-Object Visual Tracking網(wǎng)絡(luò)公開(kāi)度




書目名稱Data Association for Multi-Object Visual Tracking網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Data Association for Multi-Object Visual Tracking被引頻次




書目名稱Data Association for Multi-Object Visual Tracking被引頻次學(xué)科排名




書目名稱Data Association for Multi-Object Visual Tracking年度引用




書目名稱Data Association for Multi-Object Visual Tracking年度引用學(xué)科排名




書目名稱Data Association for Multi-Object Visual Tracking讀者反饋




書目名稱Data Association for Multi-Object Visual Tracking讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:43 | 只看該作者
Application to Animal Group Tracking in 3D,e first describe two systems used for 3D tracking of multiple animals in flight and then give examples of the use of such systems to facilitate research in the natural sciences. Both systems require solving data association across time and across view, and they rely on techniques introduced in previous chapters.
板凳
發(fā)表于 2025-3-22 03:14:22 | 只看該作者
Global Warming: Role of Livestocke resolved using all the information available. In this chapter, we discuss classic approaches in this category, in particular, the Markov Chain Monte Carlo Data Association (MCMCDA) method (Sec. 3.1), the Network Flow Data Association (NFDA) method (Sec. 3.2), and the Probabilistic Multiple Hypothesis Tracking (PMHT) method (Sec. 3.3).
地板
發(fā)表于 2025-3-22 05:31:00 | 只看該作者
5#
發(fā)表于 2025-3-22 10:34:59 | 只看該作者
6#
發(fā)表于 2025-3-22 13:05:00 | 只看該作者
Arega Mulu,T. M. Fasnamol,G. S. Dwarakishe first describe two systems used for 3D tracking of multiple animals in flight and then give examples of the use of such systems to facilitate research in the natural sciences. Both systems require solving data association across time and across view, and they rely on techniques introduced in previous chapters.
7#
發(fā)表于 2025-3-22 18:00:42 | 只看該作者
Joyce Klein Rosenthal,Dana Brechwaldnd the Joint Probabilistic Data Association (JPDA) method (Sec. 2.4) are popular, which must, in one time step, process the set of candidate assignments and decide on the most likely measurement-to-track associations.
8#
發(fā)表于 2025-3-22 22:26:12 | 只看該作者
Johannes Luetz,Peni Hausia Havea-7). Reports about algorithm performance on standard benchmarks (Chapter 9) suggest that there is still much room for improvement of the current state-of-the-art algorithms. Recent trends focus on the following two aspects of data association.
9#
發(fā)表于 2025-3-23 03:16:56 | 只看該作者
10#
發(fā)表于 2025-3-23 05:54:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 淮安市| 金塔县| 平远县| 乐清市| 双辽市| 陵水| 克什克腾旗| 井研县| 涟水县| 牡丹江市| 靖安县| 南靖县| 调兵山市| 通州市| 温宿县| 南川市| 涟源市| 营口市| 黄龙县| 商水县| 疏勒县| 锡林浩特市| 澎湖县| 濮阳县| 莫力| 新丰县| 安顺市| 公主岭市| 梅州市| 富顺县| 出国| 绥滨县| 星子县| 祁东县| 开封县| 封丘县| 襄城县| 黎城县| 石景山区| 东乌珠穆沁旗|