找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analytics in Power Markets; Qixin Chen,Hongye Guo,Yi Wang Book 2021 Science Press 2021 Power markets.bidding strategy.machine learnin

[復(fù)制鏈接]
查看: 8867|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:20:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Analytics in Power Markets
編輯Qixin Chen,Hongye Guo,Yi Wang
視頻videohttp://file.papertrans.cn/263/262712/262712.mp4
概述Presents comprehensive data analytic methods in power markets.Introduces modeling, forecasting, pattern extraction, and related application in power markets.Provides case studies on real market datase
圖書封面Titlebook: Data Analytics in Power Markets;  Qixin Chen,Hongye Guo,Yi Wang Book 2021 Science Press 2021 Power markets.bidding strategy.machine learnin
描述.This book aims to solve some key problems in the decision and optimization procedure for power market organizers and participants in data-driven approaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load uncertainty modeling, bus load bad data correction, and monthly load forecasting. The following part of the book answers how much information can be obtained from public data in locational marginal price (LMP)-based markets. It introduces topics such as congestion identification, componential price forecasting, quantifying the impact of forecasting error, and financial transmission right investment. The final part of the book answers how to model the complex market bidding behaviors. Specific works include pattern extraction, aggregated supply curve forecasting, market simulation, and reward function identification in bidding. These methods are especially useful for market organizers to understand the bidding behaviors of market participants a
出版日期Book 2021
關(guān)鍵詞Power markets; bidding strategy; machine learning; price forecasting; load forecasting
版次1
doihttps://doi.org/10.1007/978-981-16-4975-2
isbn_softcover978-981-16-4977-6
isbn_ebook978-981-16-4975-2
copyrightScience Press 2021
The information of publication is updating

書目名稱Data Analytics in Power Markets影響因子(影響力)




書目名稱Data Analytics in Power Markets影響因子(影響力)學(xué)科排名




書目名稱Data Analytics in Power Markets網(wǎng)絡(luò)公開度




書目名稱Data Analytics in Power Markets網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Analytics in Power Markets被引頻次




書目名稱Data Analytics in Power Markets被引頻次學(xué)科排名




書目名稱Data Analytics in Power Markets年度引用




書目名稱Data Analytics in Power Markets年度引用學(xué)科排名




書目名稱Data Analytics in Power Markets讀者反饋




書目名稱Data Analytics in Power Markets讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:54:19 | 只看該作者
地板
發(fā)表于 2025-3-22 06:30:40 | 只看該作者
Book 2021oaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load unc
5#
發(fā)表于 2025-3-22 11:50:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:29:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:47 | 只看該作者
https://doi.org/10.1007/978-3-642-74748-9 obtained. On this basis, different quantile regression models are implemented to combine these point forecasts in order to form the final probabilistic forecasts. Case studies on a real-world dataset demonstrate the superiority of our proposed method.
8#
發(fā)表于 2025-3-22 21:17:12 | 只看該作者
https://doi.org/10.1007/978-3-030-38456-2 to detect local fluctuation. How the data cleaning influences the forecasting performance is also investigated. Case studies on the load data of Fujian Province, China are conducted to verify the effectiveness of the proposed method.
9#
發(fā)表于 2025-3-23 02:33:10 | 只看該作者
10#
發(fā)表于 2025-3-23 09:22:25 | 只看該作者
Load Data Cleaning and Forecasting to detect local fluctuation. How the data cleaning influences the forecasting performance is also investigated. Case studies on the load data of Fujian Province, China are conducted to verify the effectiveness of the proposed method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萨迦县| 亚东县| 边坝县| 绥阳县| 合肥市| 海丰县| 通海县| 额济纳旗| 即墨市| 荔浦县| 浪卡子县| 新田县| 民和| 济阳县| 石狮市| 乡城县| 巧家县| 遵义市| 邛崃市| 富宁县| 丰原市| 化德县| 青田县| 宁阳县| 绵竹市| 那坡县| 西吉县| 景宁| 合作市| 洛扎县| 抚州市| 凤台县| 乌什县| 巫山县| 元氏县| 年辖:市辖区| 门源| 阿城市| 盈江县| 承德县| 上饶市|