找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analytics for Renewable Energy Integration. Technologies, Systems and Society; 6th ECML PKDD Worksh Wei Lee Woon,Zeyar Aung,Stuart Mad

[復(fù)制鏈接]
查看: 38631|回復(fù): 49
樓主
發(fā)表于 2025-3-21 20:00:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society
副標(biāo)題6th ECML PKDD Worksh
編輯Wei Lee Woon,Zeyar Aung,Stuart Madnick
視頻videohttp://file.papertrans.cn/263/262705/262705.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Data Analytics for Renewable Energy Integration. Technologies, Systems and Society; 6th ECML PKDD Worksh Wei Lee Woon,Zeyar Aung,Stuart Mad
描述.This book constitutes the revised selected papers from the 6th ECML PKDD Workshop on Data Analytics for Renewable Energy Integration, DARE 2018, held in Dublin, Ireland, in September 2018...The 9 papers presented in this volume were carefully reviewed and selected for inclusion in this book and handle topics such as time series forecasting, the detection of faults, cyber security, smart grid and smart cities, technology integration, demand response, and many others..
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; computer networks; data mining; energy efficiency; energy resources; estimation;
版次1
doihttps://doi.org/10.1007/978-3-030-04303-2
isbn_softcover978-3-030-04302-5
isbn_ebook978-3-030-04303-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society影響因子(影響力)




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society被引頻次




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society被引頻次學(xué)科排名




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society年度引用




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society年度引用學(xué)科排名




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society讀者反饋




書(shū)目名稱(chēng)Data Analytics for Renewable Energy Integration. Technologies, Systems and Society讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:24 | 只看該作者
https://doi.org/10.1007/978-3-031-45948-1eraging mathematical optimization. Based on electricity consumption and location of the household, the algorithm finds PV module design parameters using Covariance Matrix Adaptation Evolution Strategy (hereafter CMA-ES). According to these computed design parameters, the algorithm finds the most sim
板凳
發(fā)表于 2025-3-22 01:50:46 | 只看該作者
地板
發(fā)表于 2025-3-22 08:20:06 | 只看該作者
5#
發(fā)表于 2025-3-22 10:47:32 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:30 | 只看該作者
Social Work and Advanced Marginalitys and opportunities in power flow optimization. This promises reduced power generation costs through better integration of renewable energy generators into the Smart Grid. Unfortunately, renewable generators are fundamentally variable and uncertain. This uncertainty motivates our study of probabilis
7#
發(fā)表于 2025-3-22 20:19:07 | 只看該作者
https://doi.org/10.1007/978-3-030-16222-1of time. With our method, we demonstrate a process of utilizing large-scale satellite images to classify a wave height with a continuous regressive output using a corresponding input for close shore sea. We generated and trained a convolutional neural network model that achieved an average loss of 0
8#
發(fā)表于 2025-3-22 22:15:15 | 只看該作者
Class, Individualization and Late Modernityorld’s primary energy consumption. Building Performance Simulation (BPS) can be used to model the relationship between building characteristics and energy consumption and to facilitate optimization efforts. However, BPS is computationally intensive and only a limited set of building configurations c
9#
發(fā)表于 2025-3-23 04:11:06 | 只看該作者
10#
發(fā)表于 2025-3-23 07:38:50 | 只看該作者
Class, Surplus, and the Division of Labour In order to help achieve this balance in the grid, the renewable energy resources such as wind and stream-flow should be forecast at high accuracies on the generation side, and similarly, electricity consumption should be forecast using a high-performance system. In this paper, we deal with short-t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 炉霍县| 广平县| 周至县| 东丽区| 同江市| 偃师市| 井研县| 松潘县| 肃南| 府谷县| 司法| 富平县| 和田市| 克什克腾旗| 洪雅县| 台山市| 湘潭县| 固阳县| 乳源| 曲麻莱县| 平阴县| 松溪县| 中山市| 双峰县| 屯留县| 曲周县| 鄢陵县| 双江| 上高县| 民丰县| 周宁县| 南宁市| 景德镇市| 酉阳| 同仁县| 元阳县| 台山市| 达孜县| 资溪县| 张家界市|