找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analytics for Process Engineers; Prediction, Control Daniela Galatro,Stephen Dawe Textbook 2024 The Editor(s) (if applicable) and The

[復制鏈接]
查看: 53701|回復: 35
樓主
發(fā)表于 2025-3-21 20:07:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Analytics for Process Engineers
副標題Prediction, Control
編輯Daniela Galatro,Stephen Dawe
視頻videohttp://file.papertrans.cn/263/262700/262700.mp4
概述Includes data analytics and machine learning tools to analyze process engineering–related problems pragmatically.Provides a comprehensive review of tools for monitoring, modeling, controlling, and opt
叢書名稱Synthesis Lectures on Mechanical Engineering
圖書封面Titlebook: Data Analytics for Process Engineers; Prediction, Control  Daniela Galatro,Stephen Dawe Textbook 2024 The Editor(s) (if applicable) and The
描述This book provides an industry-oriented data analytics approach for process engineers, including data acquisition methods and sources, exploratory data analysis and sensitivity analysis, data-based modelling for prediction, data-based modelling for monitoring and control, and data-based optimization of processes. While many of the current data analytics books target business-related problems, the rationale for this book is a specific need to understand and select applicable data analytics approaches pragmatically to analyze process engineering–related problems; this tailored solution for engineers gets amalgamated with governing equations, and in several cases, with the physical understanding of the phenomenon being analyzed. We also consider this book strategically conceived to help map Education 4.0 with Industry 4.0 since it can support undergraduate and graduate students to gain valuable and applicable data analytics stills that can be further used in their workplace. Moreover, itcan be used as a reference book for professionals, a quick reference to data analytics tools that can facilitate and/or optimize their process engineering tasks.?.
出版日期Textbook 2024
關鍵詞data-based prediction; data analytics; process control; process engineering; process optimization
版次1
doihttps://doi.org/10.1007/978-3-031-46866-7
isbn_softcover978-3-031-46868-1
isbn_ebook978-3-031-46866-7Series ISSN 2573-3168 Series E-ISSN 2573-3176
issn_series 2573-3168
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Data Analytics for Process Engineers影響因子(影響力)




書目名稱Data Analytics for Process Engineers影響因子(影響力)學科排名




書目名稱Data Analytics for Process Engineers網絡公開度




書目名稱Data Analytics for Process Engineers網絡公開度學科排名




書目名稱Data Analytics for Process Engineers被引頻次




書目名稱Data Analytics for Process Engineers被引頻次學科排名




書目名稱Data Analytics for Process Engineers年度引用




書目名稱Data Analytics for Process Engineers年度引用學科排名




書目名稱Data Analytics for Process Engineers讀者反饋




書目名稱Data Analytics for Process Engineers讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:23:02 | 只看該作者
2573-3168 view of tools for monitoring, modeling, controlling, and optThis book provides an industry-oriented data analytics approach for process engineers, including data acquisition methods and sources, exploratory data analysis and sensitivity analysis, data-based modelling for prediction, data-based model
板凳
發(fā)表于 2025-3-22 02:38:33 | 只看該作者
地板
發(fā)表于 2025-3-22 07:39:53 | 只看該作者
5#
發(fā)表于 2025-3-22 12:44:38 | 只看該作者
6#
發(fā)表于 2025-3-22 16:01:59 | 只看該作者
Sources of Data,i) process simulation data. Acquired data is referred to as .; however, synthetic data, artificially generated from measured or observed data, is a valuable source of data that we explore in this chapter, mostly when the measured data is insufficient or biased.
7#
發(fā)表于 2025-3-22 17:46:46 | 只看該作者
Exploratory Data Analysis,sing observations. This chapter explores simple visualization EDA techniques, algorithms to detect and handle outliers and missing values, more advanced tools such as correlograms and clustering, and dimensionality reduction techniques.
8#
發(fā)表于 2025-3-23 00:09:15 | 只看該作者
9#
發(fā)表于 2025-3-23 01:36:34 | 只看該作者
10#
發(fā)表于 2025-3-23 06:03:16 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 17:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安吉县| 西林县| 朝阳区| 福安市| 英吉沙县| 玉环县| 灵山县| 德惠市| 湖南省| 自贡市| 九江市| 黄梅县| 安顺市| 英德市| 竹溪县| 峡江县| 鄱阳县| 嘉荫县| 庆阳市| 江川县| 宝山区| 长阳| 新津县| 乾安县| 普兰县| 上高县| 南川市| 沈阳市| 湘潭县| 多伦县| 沙洋县| 吐鲁番市| 兴安县| 乌鲁木齐县| 莱阳市| 威远县| 巴中市| 会东县| 凤庆县| 清原| 大同市|