找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Analysis in Bi-partial Perspective: Clustering and Beyond; Jan W. Owsiński Book 2020 Springer Nature Switzerland AG 2020 Computationa

[復(fù)制鏈接]
查看: 44943|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:32:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond
編輯Jan W. Owsiński
視頻videohttp://file.papertrans.cn/263/262664/262664.mp4
概述Offers a valuable resource for all data scientists who wish to broaden their perspective on the fundamental approaches available.Presents a general formulation, properties, examples, and techniques as
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Data Analysis in Bi-partial Perspective: Clustering and Beyond;  Jan W. Owsiński Book 2020 Springer Nature Switzerland AG 2020 Computationa
描述.This book presents the?.bi-partial approach.?to data analysis, which is both uniquely general and enables the development of techniques for many data analysis problems, including related models and algorithms. It is based on adequate representation of the essential clustering problem:?.to group together the similar, and to separate the dissimilar.. This leads to a general objective function and subsequently to a broad class of concrete implementations. Using this basis, a suboptimising procedure can be developed, together with a variety of implementations..This procedure has a striking affinity with the classical hierarchical merger algorithms, while also incorporating the stopping rule, based on the objective function. The approach resolves the cluster number issue, as the solutions obtained include both the content and the number of clusters. Further, it is demonstrated how the bi-partial principle can be effectively applied to a wide variety of problems in data analysis..The book offers a valuable resource for all data scientists who wish to broaden their perspective on basic approaches and essential problems, and to thus find answers to questions that are often overlooked or h
出版日期Book 2020
關(guān)鍵詞Computational Intelligence; Cluster Analysis; Data Analysis; Bi-partial Objective Function; Preference A
版次1
doihttps://doi.org/10.1007/978-3-030-13389-4
isbn_softcover978-3-030-13391-7
isbn_ebook978-3-030-13389-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond影響因子(影響力)




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond影響因子(影響力)學(xué)科排名




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond網(wǎng)絡(luò)公開度




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond被引頻次




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond被引頻次學(xué)科排名




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond年度引用




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond年度引用學(xué)科排名




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond讀者反饋




書目名稱Data Analysis in Bi-partial Perspective: Clustering and Beyond讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:51:09 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:51 | 只看該作者
5#
發(fā)表于 2025-3-22 11:18:52 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:38 | 只看該作者
Formulations in Cluster Analysis,it actually arose, that is—from cluster analysis. We shall start from the “l(fā)eading example” that was presented in Chap.?., Sect.?.. Then, we shall present, in a relatively extensive treatment, the bi-partial version of the well known k-means algorithm, and a couple of other potentially applicable versions of the bi-partial clustering formulations.
7#
發(fā)表于 2025-3-22 17:43:01 | 只看該作者
8#
發(fā)表于 2025-3-23 00:56:46 | 只看該作者
Final Remarks,ed from the attempt at a truly faithful rendition of the original problem of cluster analysis (“partition into subsets, inside which objects are as close to each other as possible, while those in different subsets are possibly distant”).
9#
發(fā)表于 2025-3-23 03:27:57 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 宣城市| 西和县| 时尚| 德安县| 临沧市| 临海市| 大悟县| 肃宁县| 灵川县| 博兴县| 福清市| 曲沃县| 页游| 府谷县| 延安市| 普格县| 化州市| 铜山县| 综艺| 城市| 平凉市| 英吉沙县| 习水县| 木兰县| 宾川县| 泸溪县| 陵水| 同江市| 金门县| 阆中市| 广平县| 寿光市| 从江县| 三都| 鄢陵县| 安义县| 射阳县| 大石桥市| 资溪县| 嵊泗县|