找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Das BUCH der Beweise; Martin Aigner,Günter M. Ziegler Textbook 20042nd edition Springer-Verlag Berlin Heidelberg 2004 Analysis.Beweis.Bewe

[復(fù)制鏈接]
樓主: Sediment
51#
發(fā)表于 2025-3-30 10:57:36 | 只看該作者
52#
發(fā)表于 2025-3-30 13:56:29 | 只看該作者
53#
發(fā)表于 2025-3-30 17:35:51 | 只看該作者
54#
發(fā)表于 2025-3-30 22:15:47 | 只看該作者
Einige irrationale Zahlene 1766 von Johann Heinrich Lambert gegeben. Im BUCH findet sich jedoch das Datum 1947: ein extrem eleganter Ein-Seiten-Beweis von Ivan Niven, für den man nur elementare Analysis braucht. Man kann aber noch viel mehr aus Nivens Methode herausholen, wie Iwamoto bzw. Koksma gezeigt haben:
55#
發(fā)表于 2025-3-31 04:29:43 | 只看該作者
Geraden in der Ebene und Zerlegungen von GraphenMan beweise, dass es nicht m?glich ist, eine endliche Anzahl reeller Punkte so anzuordnen, dass jede Gerade durch zwei der Punkte immer auch durch einen dritten der Punkte geht, es sei denn, alle Punkte liegen auf derselben Geraden:
56#
發(fā)表于 2025-3-31 05:07:17 | 只看該作者
Wenige Steigungenhmen wir natürlich an, dass die . ≥ 3 Punkte nicht alle auf einer Geraden liegen. Aus Kapitel 9 über ?Geraden in der Ebene“ kennen wir den Satz von Erd?s und de Bruijn, wonach . Punkte mindestens . verschiedene Geraden bestimmen Aber natürlich k?nnen viele von diesen Geraden parallel sein, und desha
57#
發(fā)表于 2025-3-31 12:40:33 | 只看該作者
Drei Anwendungen der Eulerschen Polyederformelrechen von . Graphen, wenn eine solche Zeichnung schon gegeben ist. Die Zeichnung zerlegt dann die Ebene oder Sph?re in eine endliche Anzahl von zusammenh?ngenden ., wobei wir das ?u?ere (unbeschr?nkte) Gebiet mitz?hlen. Die Eulersche ?Polyederformel“ liefert eine Beziehung zwischen der Anzahl der E
58#
發(fā)表于 2025-3-31 16:53:16 | 只看該作者
Simplexe, die einander berühren2 zeigt die Anordnung von vier Dreiecken im Rand, dass . (2) ≥ 4 gilt. Es gibt keine entsprechende Anordnung von fünf Dreiecken, weil dafür die Konstruktion des dualen Graphen, die in unserem Beispiel mit vier Dreiecken eine ebene Zeichnung des .. gibt, eine ebene Einbettung des .. liefern würde, wa
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呈贡县| 泽普县| 神池县| 揭阳市| 始兴县| 陆良县| 崇礼县| 金山区| 尤溪县| 晋中市| 博爱县| 利辛县| 营口市| 介休市| 理塘县| 连江县| 麦盖提县| 韶关市| 宜兰县| 衡阳县| 抚顺县| 青海省| 信阳市| 土默特右旗| 北辰区| 和田县| 长宁区| 彭州市| 大埔区| 通化市| 杭州市| 宁乡县| 庄浪县| 松桃| 武乡县| 富阳市| 大石桥市| 双牌县| 黎川县| 义乌市| 望奎县|