找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: DNA Computing; 12th International M Chengde Mao,Takashi Yokomori Conference proceedings 2006 Springer-Verlag Berlin Heidelberg 2006 3-SAT.D

[復制鏈接]
樓主: 無法仿效
21#
發(fā)表于 2025-3-25 03:23:13 | 只看該作者
https://doi.org/10.1007/978-3-322-91546-7ing that language in polynomial time. Unlike the previous case, all nodes of this ANSP depend on the given language. Since each ANSP may be viewed as a problem solver as shown in [6], the later result may be interpreted as a method for solving every .-problem in polynomial time by an ANSP of size 7.
22#
發(fā)表于 2025-3-25 10:18:50 | 只看該作者
https://doi.org/10.1007/978-3-322-88922-5hich in general is not uniform. We classify the pot in three classes: weakly satisfiable, satisfiable and strongly satisfiable according to possible components that assemble in complete complexes. This classification is characterized through the spectrum of the pot, which can be computed in PTIME using the standard Gauss-Jordan elimination method.
23#
發(fā)表于 2025-3-25 12:09:18 | 只看該作者
Allgemeine KonstruktionshinweiseAlthough our algorithm can deal with many types of hamming distance-based constraints and is easy to extend (e.g., also applicable for other constraints), in computational experiments, we succeeded in generating better sequence sets than the ones generated by exiting methods of more specified constraints.
24#
發(fā)表于 2025-3-25 18:41:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:04:30 | 只看該作者
26#
發(fā)表于 2025-3-26 01:12:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:03 | 只看該作者
28#
發(fā)表于 2025-3-26 09:21:04 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:25 | 只看該作者
Design and Simulation of Self-repairing DNA Latticesible computational DNA tile set to its reversible counterpart and hence improve the self-repairability of the computational lattice. But doing the transform with an optimal number of tiles, is still an open question.
30#
發(fā)表于 2025-3-26 20:21:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴宁市| 阿瓦提县| 遵义县| 甘泉县| 陕西省| 平潭县| 武邑县| 昂仁县| 谷城县| 麦盖提县| 顺昌县| 烟台市| 洛川县| 四平市| 郁南县| 昭觉县| 孝感市| 宜君县| 永兴县| 麟游县| 张家口市| 贵南县| 铜川市| 南康市| 西吉县| 通山县| 夏津县| 宽城| 黄陵县| 舟山市| 昌平区| 龙井市| 峨眉山市| 婺源县| 开阳县| 东平县| 巴南区| 雷州市| 潮州市| 二连浩特市| 浏阳市|