找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement; Richard C. Hendriks,Timo Gerkmann,Jesper Jensen Book 2013 Sprin

[復(fù)制鏈接]
樓主: SPARK
31#
發(fā)表于 2025-3-26 22:55:13 | 只看該作者
Applied Multivariate Statistical Analysismated in the past [61, 62]. Krawczyk and Gerkmann [63] have proposed an algorithm to blindly estimate the clean speech phase in voiced speech from a noisy observation. They showed that a blind estimation of the clean speech phase is possible and may push the limits of speech enhancement algorithms f
32#
發(fā)表于 2025-3-27 02:02:38 | 只看該作者
Wolfgang Karl H?rdle,Léopold Simar . (.) is a function of the clean speech DFT coefficients, such as the magnitude . (.) = A, P (. |.) is the . SPP,E(. (.)|., .) = 0 [85] and E.|Y, .) is realized by the estimators in Sec. 4.4. For a discussion of the special case . = log (A) see also [84]. In this section we aim at deriving estimato
33#
發(fā)表于 2025-3-27 07:37:08 | 只看該作者
34#
發(fā)表于 2025-3-27 12:06:14 | 只看該作者
DFT-Based Speech Enhancement Methods-Signal Model and Notation,ch enhancement methods, i.e., we use the DFT as the transform in Figure 2.1. The specific enhancement systems which we consider are rather general, as they impose relatively few assumptions concerning the speech and noise production process; thus, the resulting systems are robust and work well in di
35#
發(fā)表于 2025-3-27 14:23:16 | 只看該作者
Speech DFT Estimators,efficient . at each time-frequency point. Historically, two different estimator classes have been developed, namely, complex-DFT (CDFT) estimators which estimate the complex-valued DFT coefficient . directly, and magnitude-DFT (MDFT) estimators which estimate . = |S|, and append the noisy phase to f
36#
發(fā)表于 2025-3-27 19:12:21 | 只看該作者
Speech Presence Probability Estimation,that speech is present in frequency bin . at time segment . while .(.) indicates speech absence. In the sequel we neglect the time and frequency indices for brevity. In Figure 2.1 we see that the speech presence probability (SPP) may be needed for the target estimate, the noise PSD estimate, and the
37#
發(fā)表于 2025-3-28 01:13:32 | 只看該作者
Noise PSD Estimation,nd . SNR. The quality of the estimated speech signal therefore heavily depends on the accuracy of the noise PSD estimate. The noise PSD can be underestimated or overestimated. An underestimate of . generally leads to an undersuppression of the noisy speech, and an unnecessarily large amount of resid
38#
發(fā)表于 2025-3-28 02:41:38 | 只看該作者
39#
發(fā)表于 2025-3-28 09:37:16 | 只看該作者
Simulation Experiments with Single-Channel Enhancement Systems, an exhaustive comparison of all combinations of sub-algorithms of a speech enhancement system is not possible here. For a comparison of sub-algorithms, such as noise PSD estimators and SPP estimators we refer to the previous sections and the references therein. Instead, in this section we demonstra
40#
發(fā)表于 2025-3-28 13:43:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌平区| 台湾省| 闻喜县| 安新县| 昌乐县| 承德县| 新兴县| 买车| 宁城县| 汝阳县| 合山市| 资溪县| 东平县| 治县。| 陆川县| 固始县| 沂源县| 静乐县| 北宁市| 辽阳市| 宁远县| 满洲里市| 武定县| 周口市| 黔西| 南澳县| 阿克| 文山县| 公主岭市| 紫阳县| 奉新县| 太白县| 灵寿县| 固镇县| 县级市| 都江堰市| 大名县| 南汇区| 高要市| 资兴市| 潮州市|