找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Machine Learning; Proceedings of CML 2 Jagdish Chand Bansal,Samarjeet Borah,Said Salhi Conference proceedings 2024 The Editor

[復(fù)制鏈接]
查看: 25704|回復(fù): 67
樓主
發(fā)表于 2025-3-21 19:05:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computing and Machine Learning
副標(biāo)題Proceedings of CML 2
編輯Jagdish Chand Bansal,Samarjeet Borah,Said Salhi
視頻videohttp://file.papertrans.cn/243/242369/242369.mp4
概述Presents recent research in computing and machine learning.Discusses the outcomes of CML 2024, held in Sikkim, India, during March 2024.Serves as a reference resource for researchers and practitioners
叢書名稱Lecture Notes in Networks and Systems
圖書封面Titlebook: Computing and Machine Learning; Proceedings of CML 2 Jagdish Chand Bansal,Samarjeet Borah,Said Salhi Conference proceedings 2024 The Editor
描述.This book features high-quality research papers presented at the International Conference on Computing and Machine Learning (CML 2024), organized by the Department of Computer Applications, Sikkim Manipal Institute of Technology, Sikkim Manipal?University, Sikkim, India during April 29–30, 2024. The book presents diverse range of topics, including machine learning algorithms and models, deep learning and neural networks, computer vision and image processing, natural language processing, robotics and automation, reinforcement learning, big data analytics, cloud computing, Internet of things, human–robot interaction, ethical and social implications of AI, applications in healthcare, finance, and industry, computer modeling, quantum computing, high-performance computing, cognitive and parallel?computing, cloud computing, distributed computing, embedded computing, human-centered computing, and mobile computing..
出版日期Conference proceedings 2024
關(guān)鍵詞Deep learning; Big data analytics; Natural language processing; Cognitive computing; Artificial intellig
版次1
doihttps://doi.org/10.1007/978-981-97-6588-1
isbn_softcover978-981-97-6587-4
isbn_ebook978-981-97-6588-1Series ISSN 2367-3370 Series E-ISSN 2367-3389
issn_series 2367-3370
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computing and Machine Learning影響因子(影響力)




書目名稱Computing and Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Computing and Machine Learning網(wǎng)絡(luò)公開度




書目名稱Computing and Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computing and Machine Learning被引頻次




書目名稱Computing and Machine Learning被引頻次學(xué)科排名




書目名稱Computing and Machine Learning年度引用




書目名稱Computing and Machine Learning年度引用學(xué)科排名




書目名稱Computing and Machine Learning讀者反饋




書目名稱Computing and Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:11:51 | 只看該作者
地板
發(fā)表于 2025-3-22 08:03:16 | 只看該作者
5#
發(fā)表于 2025-3-22 12:45:27 | 只看該作者
Optimizing the U-Net Model for Segmenting the Lung Opacity Regions in Chest Radiographs,and appropriate treatment. To ensure continuous neuron activity during the training process, the ReLU activation in the U-Net model is replaced with the Leaky ReLU activation. The optimized U-Net model is trained and validated using 90 labeled lung opacity chest radiographs. U-Net‘s adaptability to
6#
發(fā)表于 2025-3-22 15:59:02 | 只看該作者
Intelligent Surveillance Camera System Based on Object Tracking,del is used to implement and develop the proposed system. This model is one of the most advanced human object detection models and has very high accuracy with an mAP50 value of 0.878. Besides, the Deep SORT model is used for object tracking. Then, the system checks whether the detected object is in
7#
發(fā)表于 2025-3-22 17:35:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:12:51 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:57 | 只看該作者
Enhancing Efficiency and Functionality of Voice-Controlled Cars Through NLP Techniques and Additionnd obstacle recognition using an ultrasonic sensor to increase its usefulness in real-world scenarios. Performance study uses Python and data visualization tools to visualize the relationship between execution time and the number of instructions, which offers valuable insights for future voice-contr
10#
發(fā)表于 2025-3-23 07:34:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 15:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南漳县| 那坡县| 明溪县| 双峰县| 麻阳| 普兰县| 乐亭县| 横峰县| 梁山县| 凌源市| 田林县| 永新县| 政和县| 门头沟区| 祥云县| 景宁| 阜阳市| 酒泉市| 兴化市| 格尔木市| 花莲县| 武平县| 桃江县| 西贡区| 客服| 富川| 八宿县| 陆川县| 靖边县| 内黄县| 桃江县| 集贤县| 新河县| 黄平县| 平南县| 滁州市| 休宁县| 通渭县| 宁强县| 马山县| 卢湾区|