找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: angiotensin-I
51#
發(fā)表于 2025-3-30 11:51:47 | 只看該作者
Bauliche Voraussetzungen und Hygienees. To address this, we introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass without the need for holding out any images from the target scene. Our meta-calibrator is a neural network that takes as input the NeRF images and uncalibrate
52#
發(fā)表于 2025-3-30 12:29:44 | 只看該作者
W. Steggemann,C. Krabbe-Steggemanntrates consistent and substantial performance improvements over five popular benchmarks compared with state-of-the-art methods. Notably, on the CityScapes dataset, MetaAT achieves a 1.36% error rate in performance estimation using only 0.07% of annotations, marking a . improvement over existing stat
53#
發(fā)表于 2025-3-30 16:41:44 | 只看該作者
,SeA: Semantic Adversarial Augmentation for?Last Layer Features from?Unsupervised Representation Lea on 11 benchmark downstream classification tasks with 4 popular pre-trained models. Our method is . better than the deep features without SeA on average. Moreover, compared to the expensive fine-tuning that is expected to give good performance, SeA shows a comparable performance on 6 out of 11 tasks
54#
發(fā)表于 2025-3-30 22:15:18 | 只看該作者
,Unlocking the?Potential of?Federated Learning: The Symphony of?Dataset Distillation via?Deep Generaly minimizing resource utilization. We substantiate our claim with a theoretical analysis, demonstrating the asymptotic resemblance of the process to the hypothetical ideal of completely centralized training on a heterogeneous dataset. Empirical evidence from our comprehensive experiments indicates
55#
發(fā)表于 2025-3-31 04:26:37 | 只看該作者
,Rethinking Fast Adversarial Training: A Splitting Technique to?Overcome Catastrophic Overfitting,pagation, presenting an efficient solution to enhance adversarial robustness. Our comprehensive evaluation conducted across standard datasets, demonstrates that our DR splitting-based model not only improves adversarial robustness but also achieves this with remarkable efficiency compared to various
56#
發(fā)表于 2025-3-31 05:21:35 | 只看該作者
57#
發(fā)表于 2025-3-31 11:31:21 | 只看該作者
58#
發(fā)表于 2025-3-31 17:26:17 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:48 | 只看該作者
60#
發(fā)表于 2025-4-1 01:38:23 | 只看該作者
,3D Hand Pose Estimation in?Everyday Egocentric Images,, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on?4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate?the effectiveness of our approach across 2D and 3D metrics, where we beat?past methods by 7.4% – 66%. In system level comparison
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 06:16
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
锡林浩特市| 苏尼特左旗| 乌鲁木齐市| 大同县| 鄂托克前旗| 陇南市| 淮滨县| 昆明市| 韩城市| 格尔木市| 都安| 宜川县| 勐海县| 肃南| 七台河市| 忻州市| 斗六市| 福鼎市| 通城县| 龙里县| 惠州市| 称多县| 白山市| 宣城市| 彭水| 辽中县| 乐安县| 绥化市| 友谊县| 庆元县| 当雄县| 临漳县| 乌苏市| 桃园县| 卢龙县| 浮山县| 拜泉县| 伽师县| 墨江| 万源市| 阜城县|