找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Bush
21#
發(fā)表于 2025-3-25 07:19:55 | 只看該作者
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
22#
發(fā)表于 2025-3-25 08:49:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:47:48 | 只看該作者
24#
發(fā)表于 2025-3-25 19:11:07 | 只看該作者
CMOS Image Sensors for Ambient Intelligenceoder. The whole pipeline experiences a two-stage training and is driven by our well-designed progressive and multiscale reconstruction loss. Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components. (Project page: .).
25#
發(fā)表于 2025-3-25 20:05:30 | 只看該作者
Melanie Walker,Elaine Unterhalterate that EMO is able to produce not only convincing speaking videos but also singing videos in various styles, significantly outperforming existing state-of-the-art methodologies in terms of expressiveness and realism.
26#
發(fā)表于 2025-3-26 00:12:55 | 只看該作者
,Deep Reward Supervisions for?Tuning Text-to-Image Diffusion Models,ally, we fine-tune Stable Diffusion XL 1.0 (SDXL 1.0) model via DRTune to optimize Human Preference Score v2.1, resulting in the Favorable Diffusion XL 1.0 (FDXL 1.0) model. FDXL 1.0 significantly enhances image quality compared to SDXL 1.0?and reaches comparable quality compared with Midjourney v5.2.
27#
發(fā)表于 2025-3-26 04:24:46 | 只看該作者
28#
發(fā)表于 2025-3-26 09:45:29 | 只看該作者
,EMO: Emote Portrait Alive Generating Expressive Portrait Videos with?Audio2Video Diffusion Model Unate that EMO is able to produce not only convincing speaking videos but also singing videos in various styles, significantly outperforming existing state-of-the-art methodologies in terms of expressiveness and realism.
29#
發(fā)表于 2025-3-26 12:45:28 | 只看該作者
https://doi.org/10.1007/978-3-476-03606-3ns. Comprehensive experiments show that our model achieves SOTA performance in generating ultra-high-resolution images in both machine and human evaluation. Compared to commonly used UNet structures, our model can save more than . memory when generating . images. The project URL is ..
30#
發(fā)表于 2025-3-26 18:13:46 | 只看該作者
,Inf-DiT: Upsampling Any-Resolution Image with?Memory-Efficient Diffusion Transformer,ns. Comprehensive experiments show that our model achieves SOTA performance in generating ultra-high-resolution images in both machine and human evaluation. Compared to commonly used UNet structures, our model can save more than . memory when generating . images. The project URL is ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁峙县| 铅山县| 炎陵县| 九台市| 个旧市| 阿尔山市| 偏关县| 舒兰市| 襄城县| 屯门区| 安康市| 溆浦县| 汉沽区| 英山县| 洛浦县| 鄄城县| 昂仁县| 将乐县| 沾益县| 余姚市| 聊城市| 陇南市| 泰顺县| 凤阳县| 长沙县| 莒南县| 蓬安县| 洛隆县| 阿克苏市| 阿鲁科尔沁旗| 澎湖县| 马鞍山市| 南华县| 留坝县| 云林县| 左权县| 九台市| 青海省| 淳化县| 咸阳市| 安陆市|