找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:21:03 | 只看該作者
52#
發(fā)表于 2025-3-30 14:14:06 | 只看該作者
,Free Lunch for?Gait Recognition: A Novel Relation Descriptor,on the training set’s identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our
53#
發(fā)表于 2025-3-30 20:00:39 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:40 | 只看該作者
,Adaptive Correspondence Scoring for?Unsupervised Medical Image Registration,ustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Pai
55#
發(fā)表于 2025-3-31 02:32:22 | 只看該作者
,Watch Your Steps: Local Image and?Scene Editing by?Text Instructions,elevance map conveys the importance of changing each pixel to achieve an edit, and guides downstream modifications, ensuring that pixels irrelevant to the edit remain unchanged. With the relevance maps of multiview posed images, we can define the ., defining the 3D region within which modifications
56#
發(fā)表于 2025-3-31 06:53:01 | 只看該作者
,Forget More to?Learn More: Domain-Specific Feature Unlearning for?Semi-supervised and?Unsupervised aiming to learn domain-specific features. This involves minimizing classification loss for in-domain images and maximizing uncertainty loss for out-of-domain images. Subsequently, we transform the images into a new space, strategically unlearning (forgetting) the domain-specific representations whi
57#
發(fā)表于 2025-3-31 10:27:36 | 只看該作者
58#
發(fā)表于 2025-3-31 16:36:27 | 只看該作者
Human-in-the-Loop Visual Re-ID for Population Size Estimation,0% using CV alone to less than 20% by vetting a fraction (often less than 0.002%) of the total pairs. The cost of vetting reduces with the increase in accuracy and provides a practical approach for population size estimation within a desired tolerance when deploying Re-ID systems. (Code available at
59#
發(fā)表于 2025-3-31 18:59:52 | 只看該作者
60#
發(fā)表于 2025-4-1 01:12:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 泸溪县| 舞钢市| 象州县| 根河市| 临潭县| 沭阳县| 韩城市| 保德县| 从江县| 汉源县| 白沙| 肃北| 静宁县| 蒙自县| 会同县| 荆门市| 宜章县| 九江县| 河津市| 阿图什市| 岳西县| 伊通| 始兴县| 平阳县| 剑川县| 宝坻区| 澄迈县| 蛟河市| 合水县| 尉犁县| 阜宁县| 五指山市| 呈贡县| 宜兴市| 获嘉县| 万宁市| 吴川市| 溧水县| 汪清县| 交口县|