找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: 桌前不可入
51#
發(fā)表于 2025-3-30 09:40:15 | 只看該作者
,3R-INN: How to?Be Climate Friendly While Consuming/Delivering Videos?,d daily, this contributes significantly to the greenhouse gas (GHG) emission. Therefore, reducing the end-to-end carbon footprint of the video chain, while preserving the quality of experience at the user side, is of high importance. To contribute in an impactful manner, we propose 3R-INN, a single
52#
發(fā)表于 2025-3-30 16:22:03 | 只看該作者
53#
發(fā)表于 2025-3-30 18:36:54 | 只看該作者
Towards Robust Full Low-Bit Quantization of Super Resolution Networks,ss of Super Resolution?(SR) networks to low-bit quantization considering mathematical model?of natural images. Natural images contain partially smooth areas?with edges between them. The number of pixels corresponding to edges?is significantly smaller than the overall number of pixels. As SR?task cou
54#
發(fā)表于 2025-3-30 21:23:59 | 只看該作者
55#
發(fā)表于 2025-3-31 04:30:57 | 只看該作者
56#
發(fā)表于 2025-3-31 09:00:10 | 只看該作者
,Style-Extracting Diffusion Models for?Semi-supervised Histopathology Segmentation,te these developments, generating images?with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism?whi
57#
發(fā)表于 2025-3-31 10:51:15 | 只看該作者
58#
發(fā)表于 2025-3-31 17:23:55 | 只看該作者
,Model Breadcrumbs: Scaling Multi-task Model Merging with?Sparse Masks,s fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We
59#
發(fā)表于 2025-3-31 20:36:53 | 只看該作者
60#
發(fā)表于 2025-3-31 23:27:41 | 只看該作者
iHuman: Instant Animatable Digital Humans From Monocular Videos,lass of users and wide-scale applications. In this paper, we present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos. Our method utilizes the efficiency of Gaussian splatting to model both 3D geometry and appearance. However, we observed that naiv
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 11:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
肥东县| 合水县| 建始县| 泗阳县| 左贡县| 闽清县| 滨海县| 厦门市| 苏尼特左旗| 鹿邑县| 青田县| 阜平县| 长治市| 和硕县| 开远市| 遂溪县| 侯马市| 大兴区| 丹巴县| 伊春市| 海口市| 拜泉县| 岑巩县| 周宁县| 公安县| 莎车县| 元氏县| 连江县| 乳山市| 日喀则市| 长兴县| 大足县| 庆阳市| 万载县| 博兴县| 淄博市| 鄱阳县| 修水县| 新余市| 玛纳斯县| 海丰县|