找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 大小
31#
發(fā)表于 2025-3-26 23:04:29 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:05 | 只看該作者
,Evaluating the?Adversarial Robustness of?Semantic Segmentation: Trying Harder Pays Off,than previously reported. We also demonstrate a size-bias: small objects are often more easily attacked, even if the large objects are robust, a phenomenon not revealed by current evaluation metrics. Our results also demonstrate?that a diverse set of strong attacks is necessary, because different mo
33#
發(fā)表于 2025-3-27 05:17:21 | 只看該作者
,SKYSCENES: A Synthetic Dataset for?Aerial Scene Understanding,point conditions (height and pitch), weather and time of day, and (4) incorporating additional sensor modalities (depth) can improve aerial scene understanding. Our dataset and associated generation code are publicly available at:
34#
發(fā)表于 2025-3-27 11:19:20 | 只看該作者
Large-Scale Multi-hypotheses Cell Tracking Using Ultrametric Contours Maps,a faster integer linear programming formulation, and the framework is flexible, supporting segmentations from individual off-the-shelf cell segmentation models or their combination as an ensemble. The code is available as supplementary material.
35#
發(fā)表于 2025-3-27 14:32:29 | 只看該作者
36#
發(fā)表于 2025-3-27 20:06:23 | 只看該作者
37#
發(fā)表于 2025-3-27 23:29:00 | 只看該作者
38#
發(fā)表于 2025-3-28 02:52:47 | 只看該作者
39#
發(fā)表于 2025-3-28 06:20:25 | 只看該作者
,EraseDraw: Learning to?Insert Objects by?Erasing Them from?Images,r model achieves state-of-the-art results in object insertion, particularly for in-the-wild images. We show compelling results on diverse insertion prompts and images across various domains. In addition, we automate iterative insertion by combining our insertion model with beam search guided by CLIP
40#
發(fā)表于 2025-3-28 14:25:39 | 只看該作者
,SuperFedNAS: Cost-Efficient Federated Neural Architecture Search for?On-device Inference,tedly for each case. SuperFedNAS addresses these challenges by decoupling the training and search in federated NAS. SuperFedNAS co-trains a large number of diverse DNN architectures contained inside one supernet in the FL setting. Post-training, clients perform NAS locally to find specialized DNNs b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大邑县| 义乌市| 民丰县| 呼和浩特市| 白水县| 宜兰县| 松桃| 贵州省| 定西市| 翁源县| 汨罗市| 黔西| 靖宇县| 达孜县| 射阳县| 淳化县| 鄂伦春自治旗| 靖宇县| 望江县| 潜江市| 泾阳县| 左贡县| 陵川县| 五常市| 颍上县| 松原市| 新河县| 连城县| 诸暨市| 富阳市| 宝应县| 卓尼县| 济源市| 金寨县| 唐山市| 塔城市| 汕头市| 时尚| 镇雄县| 苍山县| 徐水县|