找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Waterproof
51#
發(fā)表于 2025-3-30 12:00:48 | 只看該作者
52#
發(fā)表于 2025-3-30 13:03:00 | 只看該作者
53#
發(fā)表于 2025-3-30 18:27:19 | 只看該作者
iMatching: Imperative Correspondence Learning,try and 3D reconstruction. Despite recent progress in data-driven models, feature correspondence learning is still limited by the lack of accurate per-pixel correspondence labels. To overcome this difficulty, we introduce a new self-supervised scheme, imperative learning (IL), for training feature c
54#
發(fā)表于 2025-3-30 21:12:21 | 只看該作者
,COSMU: Complete 3D Human Shape from?Monocular Unconstrained Images,tive of this work is to reproduce high-quality details in regions of the reconstructed human body that are not visible in the input target. The proposed methodology addresses the limitations of existing approaches for reconstructing 3D human shapes from a single image, which cannot reproduce shape d
55#
發(fā)表于 2025-3-31 04:32:25 | 只看該作者
MAP-ADAPT: Real-Time Quality-Adaptive Semantic 3D Maps,oal-oriented navigation or object interaction and manipulation). Commonly, 3D semantic reconstruction systems capture the entire scene in the same level of detail. However, certain tasks (.., object interaction) require a fine-grained and high-resolution map, particularly if the objects to interact
56#
發(fā)表于 2025-3-31 07:33:34 | 只看該作者
57#
發(fā)表于 2025-3-31 09:16:55 | 只看該作者
58#
發(fā)表于 2025-3-31 16:20:52 | 只看該作者
Open Vocabulary Multi-label Video Classification,ect detection and image segmentation. Some recent works have focused on extending VLMs to open vocabulary . action classification in videos. However, previous methods fall short in holistic video understanding which requires the ability to . e.g., . in the video in an open vocabulary setting. We for
59#
發(fā)表于 2025-3-31 20:12:23 | 只看該作者
,Optimal Transport of?Diverse Unsupervised Tasks for?Robust Learning from?Noisy Few-Shot Data,ansing offers a viable solution to address noisy labels in the general learning settings, it exacerbates information loss in FSL due to limited training data, resulting in inadequate model training. To best recover the underlying task manifold corrupted by the noisy labels, we resort to learning fro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郎溪县| 伊宁市| 鹤岗市| 新绛县| 新河县| 同仁县| 绿春县| 株洲县| 清涧县| 江门市| 双江| 藁城市| 建始县| 稻城县| 麻江县| 丘北县| 三台县| 昌黎县| 广宗县| 陕西省| 新乡市| 嵊泗县| 新绛县| 潜山县| 南靖县| 行唐县| 兖州市| 永康市| 城市| 平定县| 仁化县| 藁城市| 三门县| 句容市| 武威市| 故城县| 萍乡市| 什邡市| 凭祥市| 富川| 龙胜|