找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 呻吟
31#
發(fā)表于 2025-3-26 20:57:17 | 只看該作者
,LTRL: Boosting Long-Tail Recognition via?Reflective Learning, are lightweight enough to plug?and play with existing long-tail learning methods, achieving state-of-the-art performance in popular long-tail visual benchmarks. The experimental results highlight the great potential of reflecting learning in dealing with long-tail recognition. The code will?be available at ..
32#
發(fā)表于 2025-3-27 03:24:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:30:53 | 只看該作者
34#
發(fā)表于 2025-3-27 11:02:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:21 | 只看該作者
Analyse und Interpretation der Ergebnisseons and high dynamic range which?are well-suited for correspondence tasks such as optical flow and?point tracking. However, so far there is still a lack of comprehensive benchmarks for correspondence tasks with both event data and images. To fill this gap, we propose ., a large-scale?and diverse ben
36#
發(fā)表于 2025-3-27 18:25:07 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4 controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hype
37#
發(fā)表于 2025-3-28 01:52:32 | 只看該作者
38#
發(fā)表于 2025-3-28 04:50:18 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:14 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4ey do not address the issues of sufficient target interaction and efficient parallel processing simultaneously, thereby constraining the learning of dynamic, target-aware features. To tackle these limitations, this paper proposes a spatial-temporal multi-level association framework, which jointly as
40#
發(fā)表于 2025-3-28 11:03:33 | 只看該作者
https://doi.org/10.1007/978-3-642-72495-4ate on high-resolution images (.., 8 megapixels) to capture the fine details. However, this comes at the cost of considerable computational complexity, hindering the deployment in latency-sensitive scenarios. In this paper, we introduce ., a novel approach that enhances . predictions with . refineme
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武功县| 嫩江县| 锡林浩特市| 梅州市| 阳原县| 同仁县| 师宗县| 淄博市| 怀化市| 永修县| 裕民县| 辰溪县| 石泉县| 明水县| 大荔县| 抚顺市| 连城县| 卢龙县| 九江市| 嘉鱼县| 博湖县| 武夷山市| 凉山| 蛟河市| 垫江县| 大荔县| 马关县| 阿瓦提县| 永嘉县| 潢川县| 衡东县| 望谟县| 江油市| 马关县| 北碚区| 澄迈县| 新巴尔虎右旗| 凌海市| 苏尼特右旗| 武强县| 阿鲁科尔沁旗|