找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: HAVEN
51#
發(fā)表于 2025-3-30 08:20:39 | 只看該作者
,Non-exemplar Domain Incremental Learning via?Cross-Domain Concept Integration, exemplar-based solutions are not always viable due to data privacy concerns or storage limitations.Therefore, Non-Exemplar Domain Incremental Learning (NEDIL) has emerged as a significant paradigm for resolving DIL challenges.Current NEDIL solutions extend the classifier incrementally for new domai
52#
發(fā)表于 2025-3-30 13:57:18 | 只看該作者
,Free-VSC: Free Semantics from?Visual Foundation Models for?Unsupervised Video Semantic Compression,wever, the semantic richness of previous methods remains limited, due to the single semantic learning objective, limited training data, etc. To address this, we propose to boost the UVSC task by absorbing the off-the-shelf rich semantics from VFMs. Specifically, we introduce a VFMs-shared semantic a
53#
發(fā)表于 2025-3-30 18:03:15 | 只看該作者
,Improving Virtual Try-On with?Garment-Focused Diffusion Models, apply diffusion models for synthesizing an image of a target person wearing a given in-shop garment, i.e., image-based virtual try-on (VTON) task. The difficulty originates from the aspect that the diffusion process should not only produce holistically high-fidelity photorealistic image of the targ
54#
發(fā)表于 2025-3-30 23:24:31 | 只看該作者
55#
發(fā)表于 2025-3-31 01:18:39 | 只看該作者
,Disentangled Generation and?Aggregation for?Robust Radiance Fields,h a high-quality representation and low computation cost. A key requirement of this method is the precise input of camera poses. However, due to the local update property of the triplane, a similar joint estimation as previous joint pose-NeRF optimization works easily results in local minima. To thi
56#
發(fā)表于 2025-3-31 05:01:08 | 只看該作者
,UNIKD: UNcertainty-Filtered Incremental Knowledge Distillation for?Neural Implicit Representation,quire the images of a scene from different camera views to be available for one-time training. This is expensive especially for scenarios with large-scale scenes and limited data storage. In view of this, we explore the task of incremental learning for NIRs in this work. We design a student-teacher
57#
發(fā)表于 2025-3-31 12:29:06 | 只看該作者
,Subspace Prototype Guidance for?Mitigating Class Imbalance in?Point Cloud Semantic Segmentation, segmentation network is influenced by the quantity of samples available for different categories. To mitigate the cognitive bias induced by class imbalance, this paper introduces a novel method, namely subspace prototype guidance (.), to guide the training of segmentation network. Specifically, the
58#
發(fā)表于 2025-3-31 14:03:30 | 只看該作者
59#
發(fā)表于 2025-3-31 17:50:39 | 只看該作者
,Semantic-Guided Robustness Tuning for?Few-Shot Transfer Across Extreme Domain Shift,in shift between base and novel target classes. Current methods always employ a lightweight backbone and continue to use a linear-probe-like traditional fine-tuning (Trad-FT) paradigm. While for recently emerging large-scale pre-trained model (LPM), which has more parameters with considerable prior
60#
發(fā)表于 2025-4-1 01:19:01 | 只看該作者
,Revisit Event Generation Model: Self-supervised Learning of?Event-to-Video Reconstruction with?Implvent-based and frame-based computer vision. Previous approaches have depended on supervised learning on synthetic data, which lacks interpretability and risk over-fitting to the setting of the event simulator. Recently, self-supervised learning (SSL) based methods, which primarily utilize per-frame
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿巴嘎旗| 丹江口市| 靖宇县| 阳城县| 台山市| 西充县| 桂东县| 肥西县| 民县| 寿宁县| 淮滨县| 平湖市| 桐庐县| 于田县| 高尔夫| 青河县| 卓尼县| 东源县| 乌拉特后旗| 乐昌市| 张家川| 沈丘县| 涿州市| 华池县| 海阳市| 洞口县| 棋牌| 五家渠市| 垦利县| 漳州市| 尖扎县| 崇文区| 英德市| 太康县| 垦利县| 呼伦贝尔市| 黄冈市| 依安县| 彩票| 卢龙县| 岳普湖县|