找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: bradycardia
11#
發(fā)表于 2025-3-23 10:13:33 | 只看該作者
,UDiffText: A Unified Framework for?High-Quality Text Synthesis in?Arbitrary Images via?Character-Awl attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the super
12#
發(fā)表于 2025-3-23 17:26:43 | 只看該作者
,Confidence Self-calibration for?Multi-label Class-Incremental Learning,tion of over-confident output distributions. Our approach attains new state-of-the-art results in MLCIL tasks on both MS-COCO and PASCAL VOC datasets, with the calibration of label confidences confirmed through our methodology. Our code is available at ..
13#
發(fā)表于 2025-3-23 18:47:46 | 只看該作者
,OMG: Occlusion-Friendly Personalized Multi-concept Generation in?Diffusion Models, be combined with various single-concept models, such as LoRA and InstantID without additional tuning. Especially, LoRA models on . can be exploited directly. Extensive experiments demonstrate that OMG exhibits superior performance in multi-concept personalization.
14#
發(fā)表于 2025-3-23 22:27:20 | 只看該作者
,Versatile Incremental Learning: Towards Class and?Domain-Agnostic Incremental Learning,avoid confusion with the previously learned knowledge and thereby accumulate the new knowledge more effectively. Moreover, we introduce an Incremental Classifier (IC) which expands its output nodes to address the overwriting issue from different domains corresponding to a single class while maintain
15#
發(fā)表于 2025-3-24 04:58:44 | 只看該作者
16#
發(fā)表于 2025-3-24 10:21:21 | 只看該作者
,An Incremental Unified Framework for?Small Defect Inspection,ork adaptability for new objects. Additionally, we prioritize retaining the features of established objects during weight updates. Demonstrating prowess in both image and pixel-level defect inspection, our approach achieves state-of-the-art performance, supporting dynamic and scalable industrial ins
17#
發(fā)表于 2025-3-24 14:17:21 | 只看該作者
,Enhancing Optimization Robustness in?1-Bit Neural Networks Through Stochastic Sign Descent,ImageNet ILSVRC2012 by 0.96% with eightfold fewer training iterations. In the case of ReActNet, Diode not only matches but slightly exceeds previous benchmarks without resorting to complex multi-stage optimization strategies, effectively halving the training duration. Additionally, Diode proves its
18#
發(fā)表于 2025-3-24 15:06:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:00:37 | 只看該作者
M. Takedal,G. Van Tendeloo,S. Amelinckxd local attention mechanism. Additionally, we design a novel barrier loss function based on Normalized Mutual Information to impose constraints on the registration network, which enhances the registration accuracy. The superior performance of INNReg is demonstrated through experiments on two public
20#
發(fā)表于 2025-3-25 02:19:36 | 只看該作者
Electron Microscopy of Ordering in Alloysa general FLRTF-based multi-dimensional data recovery model. Experimental results, including video frame interpolation/extrapolation, MSI band interpolation, and MSI spectral super-resolution tasks, substantiate that FLRTF has superior performance as compared with representative data recovery method
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 16:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭市| 东光县| 武清区| 新安县| 荃湾区| 托里县| 凯里市| 丰原市| 当涂县| 时尚| 彭山县| 司法| 寿宁县| 台州市| 唐海县| 阿坝县| 昭平县| 西安市| 庄浪县| 南澳县| 丹寨县| 宝清县| 措勤县| 无棣县| 广安市| 舒城县| 施秉县| 砚山县| 临武县| 赞皇县| 姚安县| 平阴县| 沧州市| 资兴市| 崇礼县| 青川县| 遵义县| 横山县| 海淀区| 高淳县| 郑州市|