找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 帳簿
51#
發(fā)表于 2025-3-30 11:59:30 | 只看該作者
,An Optimization Framework to?Enforce Multi-view Consistency for?Texturing 3D Meshes,aches typically use diffusion models to aggregate multi-view inputs, where common issues are the blurriness caused by the averaging operation in the aggregation step or inconsistencies in local features. This paper introduces an optimization framework that proceeds in four stages to achieve multi-vi
52#
發(fā)表于 2025-3-30 12:54:25 | 只看該作者
STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians,neration with spatial-temporal consistency remains a challenge. In this work, we propose STAG4D, a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation. Drawing inspiration from 3D generation techniques, we utilize a multi-view
53#
發(fā)表于 2025-3-30 19:58:30 | 只看該作者
54#
發(fā)表于 2025-3-31 00:01:38 | 只看該作者
Efficient NeRF Optimization - Not All Samples Remain Equally Hard,uality for many 3D reconstruction and rendering tasks but require substantial computational resources. The encoding of the scene information within the NeRF network parameters necessitates stochastic sampling. We observe that during the training, a major part of the compute time and memory usage is
55#
發(fā)表于 2025-3-31 01:03:29 | 只看該作者
,Revisiting Calibration of?Wide-Angle Radially Symmetric Cameras,se end-to-end approaches are typically tethered to one fixed camera model, leading to issues: . lack of flexibility, necessitating network architectural changes and retraining when changing camera models; . reduced accuracy, as a single model limits the diversity of cameras represented in the traini
56#
發(fā)表于 2025-3-31 05:14:02 | 只看該作者
,Rawformer: Unpaired Raw-to-Raw Translation for?Learnable Camera ISPs,es to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case
57#
發(fā)表于 2025-3-31 13:13:56 | 只看該作者
58#
發(fā)表于 2025-3-31 17:14:50 | 只看該作者
,Revisiting Domain-Adaptive Object Detection in?Adverse Weather by?the?Generation and?Composition of in adverse weather conditions. Despite significant progress, existing methods are still plagued by low-quality pseudo-labels in degraded images. This paper proposes a generation-composition paradigm training framework that includes the tiny-object-friendly loss, i.e., IAoU loss with a joint-filteri
59#
發(fā)表于 2025-3-31 18:04:23 | 只看該作者
60#
發(fā)表于 2025-3-31 21:44:53 | 只看該作者
Noise Calibration: Plug-and-Play Content-Preserving Video Enhancement Using Pre-trained Video Diffuenting a noising-denoising process for refinement. Despite the significant training costs, maintaining consistency of content between the original and enhanced videos remains a major challenge. To tackle this challenge, we propose?a novel formulation that considers both visual quality and consistenc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤翔县| 金山区| 巴里| 绥德县| 顺义区| 武平县| 静宁县| 昆山市| 泽州县| 临安市| 天长市| 孟州市| 腾冲县| 阿克陶县| 灵寿县| 金华市| 高安市| 诸城市| 获嘉县| 瑞昌市| 金坛市| 磴口县| 衡水市| 阜新市| 怀来县| 正宁县| 祁门县| 娄烦县| 高淳县| 潞西市| 蕉岭县| 许昌县| 阿拉善盟| 武鸣县| 静安区| 札达县| 滕州市| 韩城市| 松桃| 慈溪市| 新干县|