找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Daidzein
31#
發(fā)表于 2025-3-27 00:33:02 | 只看該作者
, , : Semantic Grasp Generation via?Language Aligned Discretization,e the training of., we compile a large-scale, grasp-text-aligned dataset named., featuring over 300k detailed captions and 50k diverse grasps. Experimental findings demonstrate that.efficiently generates natural human grasps in alignment with linguistic intentions. Our code, models, and dataset are available publicly at: ..
32#
發(fā)表于 2025-3-27 03:31:59 | 只看該作者
33#
發(fā)表于 2025-3-27 05:39:08 | 只看該作者
,VFusion3D: Learning Scalable 3D Generative Models from?Video Diffusion Models,enerative model. The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds and achieves superior performance when compared to current SOTA feed-forward 3D generative models, with users preferring our results over . of the time.
34#
發(fā)表于 2025-3-27 11:37:54 | 只看該作者
https://doi.org/10.1007/978-3-642-52015-0encoding for the drags and dataset randomization, the model generalizes well to real images and different categories. Compared to prior motion-controlled generators, we demonstrate much better part-level motion understanding.
35#
發(fā)表于 2025-3-27 16:28:09 | 只看該作者
36#
發(fā)表于 2025-3-27 18:32:35 | 只看該作者
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
37#
發(fā)表于 2025-3-28 01:18:24 | 只看該作者
Die Eigenschaften der Staatsgewaltt can faithfully reconstruct an input image. These elements can be intuitively edited by a user, and are decoded by a diffusion model into realistic images. We show the effectiveness of our representation on various image editing tasks, such as object resizing, rearrangement, dragging, de-occlusion, removal, variation, and image composition.
38#
發(fā)表于 2025-3-28 03:53:33 | 只看該作者
39#
發(fā)表于 2025-3-28 08:23:36 | 只看該作者
,Editable Image Elements for?Controllable Synthesis,t can faithfully reconstruct an input image. These elements can be intuitively edited by a user, and are decoded by a diffusion model into realistic images. We show the effectiveness of our representation on various image editing tasks, such as object resizing, rearrangement, dragging, de-occlusion, removal, variation, and image composition.
40#
發(fā)表于 2025-3-28 12:10:29 | 只看該作者
,P2P-Bridge: Diffusion Bridges for?3D Point Cloud Denoising,RKitScenes, P2P-Bridge improves by a notable margin over existing methods. Although our method demonstrates promising results utilizing solely point coordinates, we demonstrate that incorporating additional features like RGB information and point-wise DINOV2 features further improves the results.Code and pretrained networks are available at ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 13:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆元县| 潞西市| 廉江市| 东阿县| 新晃| 宜春市| 宜宾县| 酒泉市| 股票| 江达县| 工布江达县| 平邑县| 临夏市| 开江县| 赣州市| 大石桥市| 北辰区| 莱西市| 乌兰浩特市| 鄂州市| 长沙市| 宝山区| 盈江县| 兰溪市| 保山市| 南平市| 措美县| 武清区| 清徐县| 嘉黎县| 宜兴市| 谷城县| 巧家县| 垣曲县| 云浮市| 南丹县| 陆河县| 惠东县| 蕲春县| 邹城市| 新安县|