找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: AMASS
51#
發(fā)表于 2025-3-30 09:16:46 | 只看該作者
52#
發(fā)表于 2025-3-30 14:42:57 | 只看該作者
,NeuroNCAP: Photorealistic Closed-Loop Safety Testing for?Autonomous Driving,p evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios i
53#
發(fā)表于 2025-3-30 18:25:49 | 只看該作者
,OLAF: A Plug-and-Play Framework for?Enhanced Multi-object Multi-part Scene Parsing,ts. To address the task, we propose a plug-and-play approach termed OLAF. First, we augment the input (RGB) with channels containing object-based structural cues (fg/bg mask, boundary edge mask). We propose a weight adaptation technique which enables regular (RGB) pre-trained models to process the a
54#
發(fā)表于 2025-3-31 00:28:33 | 只看該作者
,Progressive Pretext Task Learning for?Human Trajectory Prediction,ges from short-term to long-term within a trajectory. However, existing works attempt to address the entire trajectory prediction with a singular, uniform training paradigm, neglecting the distinction between short-term and long-term dynamics in human trajectories. To overcome this limitation, we in
55#
發(fā)表于 2025-3-31 01:26:54 | 只看該作者
56#
發(fā)表于 2025-3-31 08:03:53 | 只看該作者
57#
發(fā)表于 2025-3-31 11:26:01 | 只看該作者
,Attention Prompting on?Image for?Large Vision-Language Models,rgent capabilities and demonstrating impressive performance on various vision-language tasks. Motivated by text prompting in LLMs, visual prompting has been explored to enhance LVLMs’ capabilities of perceiving visual information. However, previous visual prompting techniques solely process visual i
58#
發(fā)表于 2025-3-31 14:10:59 | 只看該作者
,Learning Cross-Hand Policies of?High-DOF Reaching and?Grasping,eused on another gripper. In this paper, we propose a novel method that can learn a unified policy model that can be easily transferred to different dexterous grippers. Our method consists of two stages: a gripper-agnostic policy model that predicts the displacements of pre-defined key points on the
59#
發(fā)表于 2025-3-31 20:14:11 | 只看該作者
,Reprojection Errors as?Prompts for?Efficient Scene Coordinate Regression,r, many existing SCR approaches train on samples from all image regions, including dynamic objects and texture-less areas. Utilizing these areas for optimization during training can potentially hamper the overall performance and efficiency of the model. In this study, we first perform an in-depth an
60#
發(fā)表于 2025-3-31 22:32:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
韩城市| 蓬莱市| 东明县| 故城县| 新竹县| 马公市| 遂溪县| 博湖县| 肃宁县| 牙克石市| 洮南市| 金山区| 淮安市| 巨鹿县| 濉溪县| 河东区| 南陵县| 普宁市| 龙岩市| 图们市| 天峻县| 浦东新区| 平江县| 万盛区| 福州市| 元江| 山阳县| 双流县| 舒城县| 黎平县| 仙居县| 额尔古纳市| 庆云县| 桐庐县| 漳平市| 雷州市| 得荣县| 金塔县| 沧源| 鹤岗市| 明溪县|