找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: vein220
41#
發(fā)表于 2025-3-28 14:49:12 | 只看該作者
,RecurrentBEV: A Long-Term Temporal Fusion Framework for?Multi-view 3D Detection, fusion ability while still enjoying efficient inference latency and memory consumption during inference. Extensive experiments on the nuScenes benchmark demonstrate its effectiveness, achieving a new state-of-the-art performance of 57.4. mAP and 65.1. NDS on the test set. The real-time version (25.
42#
發(fā)表于 2025-3-28 18:48:50 | 只看該作者
43#
發(fā)表于 2025-3-29 02:37:57 | 只看該作者
44#
發(fā)表于 2025-3-29 05:39:01 | 只看該作者
45#
發(fā)表于 2025-3-29 07:13:16 | 只看該作者
,Straightforward Layer-Wise Pruning for?More Efficient Visual Adaptation,dimensional space obtained through ch1tspsSNE, SLS facilitates informed pruning decisions. Our study reveals that layer-wise pruning, with a focus on storing pruning indices, addresses storage volume concerns. Notably, mainstream Layer-wise pruning methods may not be suitable for assessing layer imp
46#
發(fā)表于 2025-3-29 13:31:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:50:22 | 只看該作者
48#
發(fā)表于 2025-3-29 23:32:17 | 只看該作者
,Domain Shifting: A Generalized Solution for?Heterogeneous Cross-Modality Person Re-Identification,lities. Further, a domain alignment loss is developed to alleviate the cross-modality discrepancies by aligning the patterns across modalities. In addition, a domain distillation loss is designed to distill identity-invariant knowledge by learning the distribution of different modalities. Extensive
49#
發(fā)表于 2025-3-30 03:02:19 | 只看該作者
,Self-Supervised Video Desmoking for?Laparoscopic Surgery,zation term are presented to avoid trivial solutions. In addition, we construct a real surgery video dataset for desmoking, which covers a variety of smoky scenes. Extensive experiments on the dataset show that our SelfSVD can remove smoke more effectively and efficiently while recovering more photo
50#
發(fā)表于 2025-3-30 08:05:30 | 只看該作者
,Removing Rows and?Columns of?Tokens in?Vision Transformer Enables Faster Dense Prediction Without Rsed fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classificatio
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 03:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
菏泽市| 五家渠市| 伊春市| 丰顺县| 高州市| 永善县| 永清县| 黔江区| 文山县| 岐山县| 象州县| 樟树市| 青岛市| 葵青区| 新建县| 景洪市| 梨树县| 新乡县| 林西县| 郯城县| 吉木乃县| 阿坝| 泉州市| 衡山县| 新闻| 方山县| 南城县| 从江县| 读书| 盐山县| 佳木斯市| 梓潼县| 双辽市| 浮梁县| 辉南县| 乳山市| 凯里市| 全州县| 晴隆县| 汤阴县| 应城市|