找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: Harding
11#
發(fā)表于 2025-3-23 13:33:03 | 只看該作者
,ByteEdit: Boost, Comply and?Accelerate Generative Image Editing,npainting tasks. Despite these strides, the field grapples with inherent challenges, including: i) inferior quality; ii) poor consistency; iii) insufficient instrcution adherence; iv) suboptimal generation efficiency. To address these obstacles, we present ., an innovative feedback learning framewor
12#
發(fā)表于 2025-3-23 16:05:30 | 只看該作者
,ProDepth: Boosting Self-supervised Multi-frame Monocular Depth with?Probabilistic Fusion,scene. However, the presence of moving objects in dynamic scenes introduces inevitable inconsistencies, causing misaligned multi-frame feature matching and misleading self-supervision during training. In this paper, we propose a novel framework called ProDepth, which effectively addresses the mismat
13#
發(fā)表于 2025-3-23 19:05:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:23 | 只看該作者
,Accelerating Image Super-Resolution Networks with?Pixel-Level Classification,or DNN-based SISR, decomposing images into overlapping patches is typically necessary due to computational constraints. In such patch-decomposing scheme, one can allocate computational resources differently based on each patch’s difficulty to further improve efficiency while maintaining SR performan
15#
發(fā)表于 2025-3-24 04:44:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:25 | 只看該作者
,Click-Gaussian: Interactive Segmentation to?Any 3D Gaussians,y of 3D Gaussian Splatting. However, the current methods suffer from time-consuming post-processing to deal with noisy segmentation output. Also, they struggle to provide detailed segmentation, which is important for fine-grained manipulation of 3D scenes. In this study, we propose Click-Gaussian, w
18#
發(fā)表于 2025-3-24 15:16:04 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:19 | 只看該作者
,DySeT: A?Dynamic Masked Self-distillation Approach for?Robust Trajectory Prediction,address this is via self-supervised pre-training through masked trajectory prediction. However, the existing models rely on uniform random sampling of tokens, which is sub-optimal because it implies that all components of driving scenes are equally informative. In this paper, to enable more robust r
20#
發(fā)表于 2025-3-25 00:48:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 01:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三门县| 绩溪县| 高安市| 民权县| 汉中市| 德江县| 南木林县| 江川县| 漾濞| 德惠市| 中阳县| 齐齐哈尔市| 唐海县| 哈巴河县| 灵武市| 沙湾县| 邻水| 灵璧县| 定西市| 临沂市| 崇信县| 金山区| 花垣县| 乌苏市| 泉州市| 绥宁县| 古田县| 蕉岭县| 丹凤县| 翁牛特旗| 台山市| 麻江县| 贡嘎县| 东海县| 桂阳县| 博湖县| 寻乌县| 腾冲县| 从化市| 德化县| 佛教|