找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Harding
11#
發(fā)表于 2025-3-23 13:33:03 | 只看該作者
,ByteEdit: Boost, Comply and?Accelerate Generative Image Editing,npainting tasks. Despite these strides, the field grapples with inherent challenges, including: i) inferior quality; ii) poor consistency; iii) insufficient instrcution adherence; iv) suboptimal generation efficiency. To address these obstacles, we present ., an innovative feedback learning framewor
12#
發(fā)表于 2025-3-23 16:05:30 | 只看該作者
,ProDepth: Boosting Self-supervised Multi-frame Monocular Depth with?Probabilistic Fusion,scene. However, the presence of moving objects in dynamic scenes introduces inevitable inconsistencies, causing misaligned multi-frame feature matching and misleading self-supervision during training. In this paper, we propose a novel framework called ProDepth, which effectively addresses the mismat
13#
發(fā)表于 2025-3-23 19:05:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:23 | 只看該作者
,Accelerating Image Super-Resolution Networks with?Pixel-Level Classification,or DNN-based SISR, decomposing images into overlapping patches is typically necessary due to computational constraints. In such patch-decomposing scheme, one can allocate computational resources differently based on each patch’s difficulty to further improve efficiency while maintaining SR performan
15#
發(fā)表于 2025-3-24 04:44:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:25 | 只看該作者
,Click-Gaussian: Interactive Segmentation to?Any 3D Gaussians,y of 3D Gaussian Splatting. However, the current methods suffer from time-consuming post-processing to deal with noisy segmentation output. Also, they struggle to provide detailed segmentation, which is important for fine-grained manipulation of 3D scenes. In this study, we propose Click-Gaussian, w
18#
發(fā)表于 2025-3-24 15:16:04 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:19 | 只看該作者
,DySeT: A?Dynamic Masked Self-distillation Approach for?Robust Trajectory Prediction,address this is via self-supervised pre-training through masked trajectory prediction. However, the existing models rely on uniform random sampling of tokens, which is sub-optimal because it implies that all components of driving scenes are equally informative. In this paper, to enable more robust r
20#
發(fā)表于 2025-3-25 00:48:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 柞水县| 新疆| 石家庄市| 白河县| 张家口市| 诸城市| 阿拉善左旗| 甘孜县| 长葛市| 八宿县| 探索| 交城县| 东乌珠穆沁旗| 霍山县| 怀远县| 泰来县| 绥化市| 尚义县| 海兴县| 雅安市| 瑞金市| 孝义市| 牟定县| 张家界市| 韶山市| 鞍山市| 蓬安县| 湖州市| 日土县| 全椒县| 桃园市| 弋阳县| 普安县| 酉阳| 繁昌县| 伊金霍洛旗| 炎陵县| 南宁市| 三台县| 玉树县|