找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 尤指植物
41#
發(fā)表于 2025-3-28 18:04:51 | 只看該作者
One-Stage Prompt-Based Continual Learning,introduce a Query-Pool Regularization (QR) loss that regulates the relationship between the prompt query and the prompt pool to improve representation power. The QR loss is only applied during training time, so there is no computational overhead at inference from the QR loss. With the QR loss, our a
42#
發(fā)表于 2025-3-28 22:16:21 | 只看該作者
,SpaceJAM: a?Lightweight and?Regularization-Free Method for?Fast Joint Alignment of?Images, while significantly reducing computational demands and achieving at least a 10x speedup. SpaceJAM sets a new standard for rapid and effective image alignment, making the process more accessible and efficient. Our code is available at: ..
43#
發(fā)表于 2025-3-29 02:17:42 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:09 | 只看該作者
,: Quantization in?Low Data Regimes with?Generative Synthetic Data,ta generation process, enhancing fidelity through the inversion of learnable token embeddings. Through rigorous experimentation, . establishes new benchmarks in data-free and data-scarce quantization, significantly outperforming existing methods in accuracy and efficiency, thereby setting a new stan
45#
發(fā)表于 2025-3-29 09:18:57 | 只看該作者
46#
發(fā)表于 2025-3-29 13:35:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:19:50 | 只看該作者
48#
發(fā)表于 2025-3-29 19:45:14 | 只看該作者
,Dual-Level Adaptive Self-labeling for?Novel Class Discovery in?Point Cloud Segmentation,ning, reducing noise in generated segmentation. Finally, we conduct extensive experiments on two widely used datasets, SemanticKITTI and SemanticPOSS, and the results show our method outperforms the state of the art by a large margin.
49#
發(fā)表于 2025-3-30 01:54:27 | 只看該作者
,EBDM: Exemplar-Guided Image Translation with?Brownian-Bridge Diffusion Models,image. To efficiently guide the diffusion process toward the style of exemplar, we delineate three pivotal components: the Global Encoder, the Exemplar Network, and the Exemplar Attention Module to incorporate global and detailed texture information from exemplar images. Leveraging Bridge diffusion,
50#
發(fā)表于 2025-3-30 05:19:37 | 只看該作者
https://doi.org/10.1007/978-3-531-92543-1tion of important city blocks and buildings. Our approach achieves good realism, semantic consistency, and correctness across the heterogeneous urban styles in 330 US cities. Codes and datasets are released at?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇康县| 东乡县| 海晏县| 松溪县| 松潘县| 牟定县| 林州市| 洛扎县| 新乡市| 禹城市| 南溪县| 云龙县| 巴塘县| 修文县| 禄丰县| 百色市| 荆州市| 通辽市| 南陵县| 永嘉县| 通化县| 曲周县| 台湾省| 水城县| 浦江县| 萨嘎县| 建水县| 浦江县| 南华县| 呼图壁县| 兴文县| 萝北县| 荃湾区| 韶关市| 如皋市| 开远市| 故城县| 井冈山市| 泊头市| 桂阳县| 宣汉县|