找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FLAW
41#
發(fā)表于 2025-3-28 18:27:36 | 只看該作者
Die Mathematik der Compact Discartments. We validate that existing approaches for floor plan generation, while effective in simpler scenarios, cannot yet seamlessly address the challenges posed by MSD. Our benchmark calls for new research in floor plan machine understanding. Code and data are open.
42#
發(fā)表于 2025-3-28 20:30:05 | 只看該作者
43#
發(fā)表于 2025-3-28 23:35:02 | 只看該作者
AWOL: Analysis WithOut Synthesis Using Language,, imagine creating a specific type of tree using procedural graphics or a new kind of animal from a statistical shape model. Our key idea is to leverage language to control such existing models to produce novel shapes. This involves learning a mapping between the latent space of a vision-language mo
44#
發(fā)表于 2025-3-29 03:50:36 | 只看該作者
,OneVOS: Unifying Video Object Segmentation with?All-in-One Transformer Framework,cts aggregation. Recent advanced models either employ a discrete modeling for these components in a sequential manner, or optimize a combined pipeline through substructure aggregation. However, these existing explicit staged approaches prevent the VOS framework from being optimized as a unified whol
45#
發(fā)表于 2025-3-29 08:48:06 | 只看該作者
,M3DBench: Towards Omni 3D Assistant with?Interleaved Multi-modal Instructions,er, the majority of existing 3D vision-language datasets and methods are often limited to specific tasks, limiting their applicability in diverse scenarios. The recent advance of .arge .anguage .odels (LLMs) and .ulti-modal .anguage .odels (MLMs) has shown mighty capability in solving various langua
46#
發(fā)表于 2025-3-29 12:05:58 | 只看該作者
,MSD: A Benchmark Dataset for?Floor Plan Generation of?Building Complexes,floor plan datasets predominantly feature simple floor plan layouts, typically representing single-apartment dwellings only. To compensate for the mismatch between current datasets and the real world, we develop . (MSD) – the first large-scale floor plan dataset that contains a significant share of
47#
發(fā)表于 2025-3-29 15:58:07 | 只看該作者
48#
發(fā)表于 2025-3-29 23:22:02 | 只看該作者
49#
發(fā)表于 2025-3-30 00:56:49 | 只看該作者
,LetsMap: Unsupervised Representation Learning for?Label-Efficient Semantic BEV Mapping,g. However, most BEV mapping approaches employ a fully supervised learning paradigm that relies on large amounts of human-annotated BEV ground truth data. In this work, we address this limitation by proposing the first unsupervised representation learning approach to generate semantic BEV maps from
50#
發(fā)表于 2025-3-30 07:11:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳平市| 永胜县| 焦作市| 沿河| 辉县市| 会同县| 黄浦区| 治多县| 台安县| 栾川县| 扎鲁特旗| 广德县| 从江县| 五寨县| 巴塘县| 桃源县| 凤台县| 北川| 博湖县| 临西县| 河津市| 施秉县| 屏东县| 邓州市| 宜兴市| 洪湖市| 高平市| 项城市| 酒泉市| 肥乡县| 资源县| 佛教| 廉江市| 醴陵市| 安阳县| 海安县| 澳门| 方正县| 肥城市| 镇巴县| 梅河口市|