找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
查看: 46657|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:14:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision – ECCV 2024
副標(biāo)題18th European Confer
編輯Ale? Leonardis,Elisa Ricci,Gül Varol
視頻videohttp://file.papertrans.cn/243/242308/242308.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic
描述.The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..
出版日期Conference proceedings 2025
關(guān)鍵詞artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computer
版次1
doihttps://doi.org/10.1007/978-3-031-73235-5
isbn_softcover978-3-031-73234-8
isbn_ebook978-3-031-73235-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Computer Vision – ECCV 2024影響因子(影響力)




書(shū)目名稱Computer Vision – ECCV 2024影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision – ECCV 2024網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2024被引頻次




書(shū)目名稱Computer Vision – ECCV 2024被引頻次學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2024年度引用




書(shū)目名稱Computer Vision – ECCV 2024年度引用學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2024讀者反饋




書(shū)目名稱Computer Vision – ECCV 2024讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:14:38 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:12 | 只看該作者
,SLEDGE: Synthesizing Driving Environments with?Generative Models and?Rule-Based Traffic, able to generate agent bounding boxes and lane graphs. The model’s outputs serve as an initial state for rule-based traffic simulation. The unique properties of the entities to be generated for SLEDGE, such as their connectivity and variable count per scene, render the naive application of most mod
5#
發(fā)表于 2025-3-22 11:35:21 | 只看該作者
,AFreeCA: Annotation-Free Counting for?All,orks to count objects from specific classes (such as humans or penguins), and counting objects from diverse categories remains a challenge. The availability of robust text-to-image latent diffusion models (LDMs) raises the question of whether these models can be utilized to generate counting dataset
6#
發(fā)表于 2025-3-22 14:33:50 | 只看該作者
,Adversarially Robust Distillation by?Reducing the?Student-Teacher Variance Gap,versarially robust knowledge distillation has emerged as a principle strategy, facilitating the transfer of robustness from a large-scale teacher model to a lightweight student model. However, existing works focus solely on sample-to-sample alignment of features or predictions between the teacher an
7#
發(fā)表于 2025-3-22 19:50:13 | 只看該作者
,: Scalable Latent Neural Fields Diffusion for?Speedy 3D Generation,h 2D diffusion has achieved success, a unified 3D diffusion pipeline remains unsettled. This paper introduces a novel framework called.to address this gap and enable fast, high-quality, and generic conditional 3D generation. Our approach harnesses a 3D-aware architecture and variational autoencoder
8#
發(fā)表于 2025-3-22 22:13:03 | 只看該作者
,Hierarchical Temporal Context Learning for?Camera-Based Semantic Scene Completion,stream solutions generally leverage temporal information by roughly stacking history frames to supplement the current frame, such straightforward temporal modeling inevitably diminishes valid clues and increases learning difficulty. To address this problem, we present ., a novel .ierarchical .empora
9#
發(fā)表于 2025-3-23 04:47:03 | 只看該作者
,Equi-GSPR: Equivariant SE(3) Graph Network Model for?Sparse Point Cloud Registration,on approaches have succeeded, leveraging the intrinsic symmetry of point cloud data, including rotation equivariance, has received insufficient attention. This prohibits the model from learning effectively, resulting in a requirement for more training data and increased model complexity. To address
10#
發(fā)表于 2025-3-23 09:15:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮梁县| 胶州市| 紫阳县| 六枝特区| 凤阳县| 罗定市| 合作市| 夏津县| 巴东县| 阿图什市| 五台县| 闽侯县| 桂阳县| 兴文县| 大英县| 青田县| 儋州市| 通江县| 浙江省| 海兴县| 合江县| 浦东新区| 团风县| 神池县| 太白县| 大丰市| 东兴市| 原平市| 诏安县| 临泽县| 屏南县| 天津市| 威宁| 台山市| 普兰县| 拉孜县| 大港区| 芜湖市| 陈巴尔虎旗| 渭南市| 甘孜县|