找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Philanthropist
51#
發(fā)表于 2025-3-30 11:36:06 | 只看該作者
52#
發(fā)表于 2025-3-30 14:49:23 | 只看該作者
53#
發(fā)表于 2025-3-30 19:12:08 | 只看該作者
54#
發(fā)表于 2025-3-30 23:45:28 | 只看該作者
55#
發(fā)表于 2025-3-31 03:17:34 | 只看該作者
56#
發(fā)表于 2025-3-31 07:00:33 | 只看該作者
,VideoMamba: State Space Model for?Efficient Video Understanding,o domain. The proposed VideoMamba overcomes the limitations of existing 3D convolution neural networks (CNNs) and video transformers. Its linear-complexity operator enables efficient long-term modeling, which is crucial for high-resolution long video understanding. Extensive evaluations reveal Video
57#
發(fā)表于 2025-3-31 10:23:45 | 只看該作者
,SAFNet: Selective Alignment Fusion Network for?Efficient HDR Imaging,ethods have achieved great success by either following the alignment and fusion pipeline or utilizing attention mechanism. However, the large computation cost and inference delay hinder them from deploying on resource limited devices. In this paper, to achieve better efficiency, a novel Selective Al
58#
發(fā)表于 2025-3-31 14:39:27 | 只看該作者
,Heterogeneous Graph Learning for?Scene Graph Prediction in?3D Point Clouds,her exploit context information or emphasize knowledge prior to model the scene graph in a fully-connected homogeneous graph framework. However, these methods may lead to indiscriminate message passing among graph nodes (i.e., objects), resulting in sub-optimal performance. In this paper, we propose
59#
發(fā)表于 2025-3-31 17:44:30 | 只看該作者
,Reason2Drive: Towards Interpretable and?Chain-Based Reasoning for?Autonomous Driving,ning tasks essential for highly autonomous vehicle behavior. Despite their potential, research in autonomous systems is hindered by the lack of datasets with annotated reasoning chains that explain the decision-making processes in driving. To bridge this gap, we present Reason2Drive, a benchmark dat
60#
發(fā)表于 2025-4-1 01:10:27 | 只看該作者
,Omniview-Tuning: Boosting Viewpoint Invariance of?Vision-Language Pre-training Models,ess to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs’ original performance by breaking through two primary obs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井陉县| 湖北省| 承德县| 搜索| 思南县| 北海市| 交城县| 祁连县| 慈利县| 康保县| 老河口市| 土默特左旗| 德清县| 仁布县| 晋城| 高唐县| 阿合奇县| 丰都县| 韩城市| 托克托县| 新余市| 定结县| 富蕴县| 深水埗区| 调兵山市| 南丰县| 宿松县| 兴山县| 安丘市| 通榆县| 萍乡市| 松潘县| 贵德县| 金昌市| 襄城县| 新乡市| 龙山县| 临安市| 依安县| 辉南县| 左贡县|