找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Interpolate
21#
發(fā)表于 2025-3-25 06:56:48 | 只看該作者
https://doi.org/10.1007/978-3-322-82723-4uted from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
22#
發(fā)表于 2025-3-25 11:17:57 | 只看該作者
https://doi.org/10.1007/978-94-011-1946-7e core of ClusteringSDF, we introduce a highly efficient .?for lifting 2D labels to 3D. Experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF ?can achieve competitive performance compared to the state-of-the-art with significantly reduced training time.
23#
發(fā)表于 2025-3-25 12:57:29 | 只看該作者
Ortega Y Gasset, Phenomenology and Quixoted visually indicate them within images, outperforming strong baselines both on the binary alignment classification and the explanation generation tasks. Our code and human curated test set are available at: ..
24#
發(fā)表于 2025-3-25 16:02:03 | 只看該作者
,McGrids: Monte Carlo-Driven Adaptive Grids for?Iso-Surface Extraction,uted from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
25#
發(fā)表于 2025-3-25 21:28:15 | 只看該作者
,ClusteringSDF: Self-Organized Neural Implicit Surfaces for?3D Decomposition,e core of ClusteringSDF, we introduce a highly efficient .?for lifting 2D labels to 3D. Experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF ?can achieve competitive performance compared to the state-of-the-art with significantly reduced training time.
26#
發(fā)表于 2025-3-26 00:22:23 | 只看該作者
,Mismatch Quest: Visual and?Textual Feedback for?Image-Text Misalignment,d visually indicate them within images, outperforming strong baselines both on the binary alignment classification and the explanation generation tasks. Our code and human curated test set are available at: ..
27#
發(fā)表于 2025-3-26 04:20:06 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:05 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:56 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:54 | 只看該作者
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通江县| 航空| 富阳市| 邢台县| 米易县| 石狮市| 皮山县| 枝江市| 临猗县| 泰宁县| 余江县| 洪江市| 扶绥县| 杭州市| 昌乐县| 汝南县| 寿阳县| 辽阳县| 富阳市| 昂仁县| 保亭| 柯坪县| 珠海市| 神农架林区| 自治县| 策勒县| 潜山县| 黄骅市| 山丹县| 合山市| 根河市| 新泰市| 门头沟区| 青神县| 湖州市| 南澳县| 九龙城区| 石狮市| 普陀区| 昌乐县| 郴州市|