找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Interpolate
21#
發(fā)表于 2025-3-25 06:56:48 | 只看該作者
https://doi.org/10.1007/978-3-322-82723-4uted from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
22#
發(fā)表于 2025-3-25 11:17:57 | 只看該作者
https://doi.org/10.1007/978-94-011-1946-7e core of ClusteringSDF, we introduce a highly efficient .?for lifting 2D labels to 3D. Experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF ?can achieve competitive performance compared to the state-of-the-art with significantly reduced training time.
23#
發(fā)表于 2025-3-25 12:57:29 | 只看該作者
Ortega Y Gasset, Phenomenology and Quixoted visually indicate them within images, outperforming strong baselines both on the binary alignment classification and the explanation generation tasks. Our code and human curated test set are available at: ..
24#
發(fā)表于 2025-3-25 16:02:03 | 只看該作者
,McGrids: Monte Carlo-Driven Adaptive Grids for?Iso-Surface Extraction,uted from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
25#
發(fā)表于 2025-3-25 21:28:15 | 只看該作者
,ClusteringSDF: Self-Organized Neural Implicit Surfaces for?3D Decomposition,e core of ClusteringSDF, we introduce a highly efficient .?for lifting 2D labels to 3D. Experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF ?can achieve competitive performance compared to the state-of-the-art with significantly reduced training time.
26#
發(fā)表于 2025-3-26 00:22:23 | 只看該作者
,Mismatch Quest: Visual and?Textual Feedback for?Image-Text Misalignment,d visually indicate them within images, outperforming strong baselines both on the binary alignment classification and the explanation generation tasks. Our code and human curated test set are available at: ..
27#
發(fā)表于 2025-3-26 04:20:06 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:05 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:56 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:54 | 只看該作者
0302-9743 ce on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸州市| 永宁县| 庄河市| 新野县| 刚察县| 宁南县| 庆云县| 鄂托克旗| 贡山| 泽普县| 内黄县| 施秉县| 扬州市| 宜川县| 清丰县| 黄龙县| 安西县| 麟游县| 杭锦旗| 漠河县| 德化县| 长乐市| 庆云县| 葫芦岛市| 托克逊县| 三穗县| 开封县| 成武县| 临海市| 东乌珠穆沁旗| 乐安县| 新余市| 崇礼县| 荔波县| 沈丘县| 台中县| 阳新县| 博野县| 宾阳县| 彰化县| 合肥市|