找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Ale? Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[復制鏈接]
樓主: centipede
51#
發(fā)表于 2025-3-30 10:40:50 | 只看該作者
52#
發(fā)表于 2025-3-30 14:11:38 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:29 | 只看該作者
54#
發(fā)表于 2025-3-30 23:53:43 | 只看該作者
https://doi.org/10.1007/978-3-319-47334-5esses. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fai
55#
發(fā)表于 2025-3-31 04:07:00 | 只看該作者
Tu?ba Ko?ak,Aytu? Altunda?,Thomas Hummele adaptation to fail in Mono 3Det. To handle this problem, we propose a novel .cular .est-.ime .daptation (.) method, based on two new strategies. 1) Reliability-driven adaptation: we empirically find that . and the optimization of high-score objects can .. Thus, we devise a self-adaptive strategy t
56#
發(fā)表于 2025-3-31 06:35:17 | 只看該作者
57#
發(fā)表于 2025-3-31 10:55:29 | 只看該作者
58#
發(fā)表于 2025-3-31 14:05:22 | 只看該作者
Serge Yan Landau,Giovanni Molleenabling the unified color NeRF reconstruction. Besides the view-independent color correction module for external differences, we predict a view-dependent function to minimize the color residual (including, .., specular and shading) to eliminate the impact of inherent attributes. We further describe
59#
發(fā)表于 2025-3-31 17:30:26 | 只看該作者
Zoochory: The Dispersal Of Plants By Animals support multi-task training. Tested across ten diverse 3D-VL datasets, . demonstrates impressive performance on these tasks, setting new records on most benchmarks. Particularly, . improves the state-of-the-art on ScanNet200 by 4.9% (AP25), ScanRefer by 5.4% (acc@0.5), Multi3DRefer by 11.7% (F1@0.5
60#
發(fā)表于 2025-3-31 23:22:05 | 只看該作者
Zoochory: The Dispersal Of Plants By Animalsing a minimal number of models to draw a more optimized-averaged model. We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures, achieving remarkable performance on both ID and OOD tasks on the standard benchmarks, all while barely bringing extra c
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
蒙城县| 宜阳县| 固安县| 闵行区| 商河县| 永安市| 望江县| 新巴尔虎左旗| 双牌县| 沂水县| 伊金霍洛旗| 银川市| 吉林省| 武安市| 道孚县| 隆安县| 永吉县| 吴旗县| 沁阳市| 金平| 沙洋县| 乌兰浩特市| 教育| 德格县| 莫力| 新兴县| 麻城市| 西吉县| 从江县| 兴隆县| 东山县| 得荣县| 琼结县| 台湾省| 海城市| 韶山市| 绥宁县| 京山县| 淮滨县| 聊城市| 夏津县|